Những câu hỏi liên quan
H24
Xem chi tiết
ND
26 tháng 5 2018 lúc 17:09

Khai triển rồi thu gọn

Bình luận (0)
PN
19 tháng 9 2019 lúc 21:09

đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải

Bình luận (0)
SV
Xem chi tiết
NT
5 tháng 1 2023 lúc 7:30

\(=\left[\left(\dfrac{-\left(x-y\right)}{x-2y}-\dfrac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}\right):\dfrac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}\right]:\dfrac{x+1}{2x^2+y+2}\)

\(=\dfrac{-x^2+y^2-x^2-y^2-y+2}{\left(x-2y\right)\left(x+y\right)}\cdot\dfrac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y-2\right)\left(2x^2+y+2\right)}\cdot\dfrac{2x^2+y+2}{x+1}\)

\(=\dfrac{-2x^2-y+2}{\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)}{\left(2x^2+y-2\right)\left(2x^2+y+2\right)}\cdot\dfrac{2x^2+y+2}{x+1}\)

\(=\dfrac{-1}{x-2y}\)

Bình luận (0)
TA
5 tháng 1 2023 lúc 10:00

Thay $x=-1,76$ và $y=\dfrac{3}{25}$ vào $P=\dfrac{-1}{x-2y}$, ta được:

$P=\dfrac{-1}{-1,76-2.(\dfrac{3}{25})}=\dfrac{1}{2}$.

Bình luận (0)
LT
Xem chi tiết
DL
9 tháng 6 2016 lúc 6:28

a)

\(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right).\)

b) 

\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=x^3+x^2y+x^2z+xy^2+y^3+y^2z+\)

\(+xz^2+yz^2+z^3-x^2y-xy^2-xyz-xyz-y^2z-yz^2-x^2z-xyz-xz^2=\)

\(=x^3+y^3+z^3-3xyz\)

Bình luận (0)
BA
Xem chi tiết
CQ
6 tháng 9 2020 lúc 21:45

a) 

\(VT=\left(x^2-2^2\right)\left(x^2+4\right)\) 

\(=\left(x^2-4\right)\left(x^2+4\right)\) 

\(=\left(x^2\right)^2-4^2\) 

\(=x^4-16\) 

\(=VP\) 

b) 

\(VT=x^3+x^2y-x^2y-xy^2+xy^2+y^3\) 

\(=x^3+y^3\) 

\(=VP\)  

Bình luận (0)
 Khách vãng lai đã xóa
LD
6 tháng 9 2020 lúc 21:27

( x + 2 )( x - 2 )( x2 + 4 )

= ( x2 - 4 )( x2 + 4 ) ( xài HĐT a2 - b2 = ( a - b )( a + b ) nhé ^^ )

= x4 - 16 ( đpcm )

( x- xy + y2 )( x + y )

= x3 + x2y - x2y - xy2 + xy2 + y3

= x3 + y3 ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
8 tháng 11 2015 lúc 19:19

câu hỏi tương tự

Bình luận (0)
TN
Xem chi tiết
BT
4 tháng 8 2019 lúc 10:49

\(\left(x-y\right)\left(x^3+x^{2y}+xy^2+y^3\right)-x^4+y^4\)

\(\Leftrightarrow x^4+x^{2y+1}+x^2y^2+xy^3-x^3y-x^{2y}y-xy^3-y^4-x^4+y^4\)

\(\Leftrightarrow x^{2y+1}+x^2y^2-x^3y-x^{2y}y\)

Bình luận (0)
TN
Xem chi tiết
XL
Xem chi tiết
KR
Xem chi tiết
NL
28 tháng 3 2021 lúc 5:58

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x^2+y^2\right)+\left(x^2+y^2-4\right)\left(y+2\right)=0\\x^2+y^2+\left(x+y-2\right)\left(y+2\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x^2+y^2-4\right)\left(y+2\right)=-x\left(x^2+y^2\right)\\-\left(x^2+y^2\right)=\left(x+y-2\right)\left(y+2\right)\end{matrix}\right.\)

\(\Rightarrow\left(x^2+y^2-4\right)\left(y+2\right)=x\left(x+y-2\right)\left(y+2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\left(\text{không thỏa mãn}\right)\\x^2+y^2-4=x\left(x+y-2\right)\end{matrix}\right.\) 

\(\Rightarrow x^2+y^2-4=x^2+x\left(y-2\right)\)

\(\Leftrightarrow\left(y+2\right)\left(y-2\right)=x\left(y-2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2\\x=y+2\end{matrix}\right.\)

Thế vào pt dưới:

\(\Rightarrow\left[{}\begin{matrix}x^2+8+2x+2x-4=0\\\left(y+2\right)^2+2y^2+y\left(y+2\right)+2\left(y+2\right)-4=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Câu b chắc chắn đề sai, nhìn 2 vế pt đầu đều có \(x^2\) thì chúng sẽ rút gọn, không ai cho đề như thế hết

Bình luận (1)