Những câu hỏi liên quan
TH
Xem chi tiết
LN
20 tháng 7 2021 lúc 22:11

\(1,\left(2+\sqrt{3}\right)\left(7-4\sqrt{3}\right)\\ =14-8\sqrt{3}+7\sqrt{3}-12\\ =2-\sqrt{3}\\ 2,\left(\sqrt{5-2\sqrt{6}}+\sqrt{2}\right)\sqrt{3}\\ =\left(\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{2}\right)\sqrt{3}\\ =\left(\left|\sqrt{3}-\sqrt{2}\right|+\sqrt{2}\right)\sqrt{3}\\ =\left(\sqrt{3}-\sqrt{2}+\sqrt{2}\right)\sqrt{3}\\ =\sqrt{3}.\sqrt{3}\\ =3\\ 3,\sqrt{4+2\sqrt{3}}-\sqrt{5-2\sqrt{6}}+\sqrt{2}\\ =\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{2}\\ =\left|\sqrt{3}+1\right|-\left|\sqrt{3}-\sqrt{2}\right|+\sqrt{2}\\ =\sqrt{3}+1-\sqrt{3}-\sqrt{2}+\sqrt{2}\\ =1\\ 4,\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}\\ =\sqrt{\left(1+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{4}-\sqrt{2}\right)^2}\\ =\left|1+\sqrt{2}\right|+\left|\sqrt{4}-\sqrt{2}\right|\\ =1+\sqrt{2}+\sqrt{4}-\sqrt{2}\\ =1+\sqrt{4}\\ 5,2+\sqrt{17-4\sqrt{9+4\sqrt{5}}}\\ =2+\sqrt{17-8-4\sqrt{5}}\\ =2+\sqrt{\left(\sqrt{5}-2\right)^2}\\ =2+\left|\sqrt{5}-2\right|\\ =2+\sqrt{5}-2\\ =\sqrt{5}\)

 

Bình luận (0)
BG
Xem chi tiết
NT
12 tháng 7 2021 lúc 20:38

a) Ta có: \(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)

\(=\sqrt{2}-1-3-\sqrt{2}\)

=-4

b) Ta có: \(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)

\(=\sqrt{3}-1-2+\sqrt{3}+4+\sqrt{3}\)

\(=3\sqrt{3}+1\)

c) Ta có: \(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)

\(=\sqrt{5}-1+\sqrt{5}-2-3+\sqrt{5}\)

\(=3\sqrt{5}-6\)

d) Ta có: \(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2\right)^6}\)

\(=\sqrt{7}-2+4-\sqrt{7}+8\)

=10

Bình luận (0)
NN
Xem chi tiết
NT
28 tháng 6 2023 lúc 19:17

a: \(=\dfrac{6+4\sqrt{2}}{\sqrt{2}+2+\sqrt{2}}+\dfrac{6-4\sqrt{2}}{\sqrt{2}-2+\sqrt{2}}\)

\(=\dfrac{6+4\sqrt{2}}{2+2\sqrt{2}}+\dfrac{6-4\sqrt{2}}{2\sqrt{2}-2}\)

\(=\dfrac{3+2\sqrt{2}}{\sqrt{2}+1}+\dfrac{3-2\sqrt{2}}{\sqrt{2}-1}\)

=căn 2+1+căn 2-1=2căn 2

b: \(=\dfrac{\sqrt{3}+\sqrt{3+\sqrt{3}}+\sqrt{3}-\sqrt{3+\sqrt{3}}}{1-\sqrt{3}-1}=\dfrac{-2\sqrt{3}}{\sqrt{3}}=-2\)

Bình luận (1)
MV
Xem chi tiết
NL
1 tháng 7 2021 lúc 10:20

\(a,=\sqrt{6+2\sqrt{3-2\sqrt{3}+1}}\)

\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(=\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

\(b,=\sqrt{6-2\sqrt{3+\sqrt{12+2\sqrt{12}+1}}}\)

\(=\sqrt{6-2\sqrt{3+\sqrt{12}+1}}\)

\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}}\)

\(=\sqrt{6-2\left(\sqrt{3}+1\right)}=\sqrt{6-2\sqrt{3}-2}=\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3-2\sqrt{3}+1}=\sqrt{3}-1\)

\(c,=\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{4+2.2\sqrt{3}+3}}}\)

\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{\sqrt{3}+\sqrt{25-2.5\sqrt{3}+3}}\)

\(=\sqrt{\sqrt{3}+5-\sqrt{3}}=\sqrt{5}\)

\(d,=\sqrt{23-6\sqrt{10+4\sqrt{2-2\sqrt{2}+1}}}\)

\(=\sqrt{23-6\sqrt{6+4\sqrt{2}}}\)

\(=\sqrt{23-6\sqrt{4+2.2\sqrt{2}+2}}\)

\(=\sqrt{23-6\sqrt{\left(2+\sqrt{2}\right)^2}}\)

\(=\sqrt{23-12-6\sqrt{2}}=\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{9-2.3\sqrt{2}+2}=3-\sqrt{2}\)

Bình luận (0)
NT
1 tháng 7 2021 lúc 10:24

a) Ta có: \(\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)

b) Ta có: \(\sqrt{6-2\sqrt{3+\sqrt{13+4\sqrt{3}}}}\)

\(=\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)

\(=\sqrt{6-2\left(\sqrt{3}+1\right)}\)

\(=\sqrt{4-2\sqrt{3}}=\sqrt{3}-1\)

c) Ta có: \(\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{\sqrt{3}+5-\sqrt{3}}\)

\(=\sqrt{5}\)

d) Ta có: \(\sqrt{23-6\sqrt{10+4\sqrt{3-2\sqrt{2}}}}\)

\(=\sqrt{23-6\sqrt{10+4\left(\sqrt{2}-1\right)}}\)

\(=\sqrt{23-6\sqrt{6-4\sqrt{2}}}\)

\(=\sqrt{23-6\left(2-\sqrt{2}\right)}\)

\(=\sqrt{11+6\sqrt{2}}\)

\(=3+\sqrt{2}\)

Bình luận (0)
NL
Xem chi tiết
HP
6 tháng 8 2021 lúc 9:36

a, Sửa đề:

\(A=\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)

\(=\dfrac{\sqrt{2}-\sqrt{2+\sqrt{3}}}{2-2-\sqrt{3}}+\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{2-2+\sqrt{3}}\)

\(=\dfrac{\sqrt{2}-\sqrt{2+\sqrt{3}}}{-\sqrt{3}}+\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{\sqrt{3}}\)

\(=\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}-\sqrt{2}+\sqrt{2+\sqrt{3}}}{\sqrt{3}}\)

\(=\dfrac{2\sqrt{2-\sqrt{3}}}{\sqrt{3}}\)

\(=\dfrac{2\sqrt{6-3\sqrt{3}}}{3}\)

Bình luận (0)
MN
Xem chi tiết
AH
11 tháng 8 2021 lúc 17:28

1.

\(\frac{3\sqrt{5}-5\sqrt{3}}{\sqrt{15}-3}=\frac{3\sqrt{5}-\sqrt{5}.\sqrt{15}}{\sqrt{15}-3}=\frac{-\sqrt{5}(\sqrt{15}-3)}{\sqrt{15}-3}=-\sqrt{5}\)

2.

\(\frac{\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{2+2\sqrt{2.3}+3}}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{(\sqrt{2}+\sqrt{3})^2}}{\sqrt{2}+\sqrt{3}}\)

\(=\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}+\sqrt{3}}=1\)

3.

\(\frac{7+4\sqrt{3}}{2+\sqrt{3}}=\frac{2^2+2.2\sqrt{3}+3}{2+\sqrt{3}}=\frac{(2+\sqrt{3})^2}{2+\sqrt{3}}=2+\sqrt{3}\)

Bình luận (0)
AH
11 tháng 8 2021 lúc 17:33

4.

\(\frac{16-6\sqrt{7}}{\sqrt{7}-3}=\frac{3^2-2.3\sqrt{7}+7}{\sqrt{7}-3}=\frac{(\sqrt{7}-3)^2}{\sqrt{7}-3}=\sqrt{7}-3\)

5.

\(\frac{(\sqrt{3}-\sqrt{2})^2+4\sqrt{6}}{\sqrt{3}+\sqrt{2}}=\frac{3+2+2\sqrt{2.3}}{\sqrt{3}+\sqrt{2}}=\frac{(\sqrt{3}+\sqrt{2})^2}{\sqrt{3}+\sqrt{2}}=\sqrt{3}+\sqrt{2}\)

6.

\(=\frac{(\sqrt{3})^2+(2\sqrt{5})^2-2.\sqrt{3}.2\sqrt{5}}{\sqrt{6-2\sqrt{10}}}=\frac{(\sqrt{3}-2\sqrt{5})^2}{\sqrt{6-2\sqrt{10}}}\)

Bình luận (0)
AS
Xem chi tiết
AH
20 tháng 7 2020 lúc 11:35

1.

$\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+1+2\sqrt{3}}-\sqrt{3+1-2\sqrt{3}}$

$=\sqrt{(\sqrt{3}+1)^2}-\sqrt{(\sqrt{3}-1)^2}$

$=|\sqrt{3}+1|-|\sqrt{3}-1|=2$

2.

\(\sqrt{12+6\sqrt{3}+\sqrt{12-6\sqrt{3}}}=\sqrt{12+6\sqrt{3}+\sqrt{9+3-2\sqrt{9.3}}}=\sqrt{12+6\sqrt{3}+\sqrt{(3-\sqrt{3})^2}}\)

\(=\sqrt{12+6\sqrt{3}+3-\sqrt{3}}=\sqrt{15+5\sqrt{3}}\)

Bình luận (0)
AH
20 tháng 7 2020 lúc 11:39

3.

\(\sqrt{9-4\sqrt{2}+\sqrt{9+4\sqrt{2}}}=\sqrt{9-4\sqrt{2}+\sqrt{8+1+2\sqrt{8.1}}}\)

\(=\sqrt{9-4\sqrt{2}+\sqrt{2\sqrt{2}+1)^2}}=\sqrt{9-4\sqrt{2}+2\sqrt{2}+1}=\sqrt{10-2\sqrt{2}}\)

4.

\(\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{9-\sqrt{32}}}}=\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{8+1-2\sqrt{8.1}}}}\)

\(=\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{(\sqrt{8}-1)^2}}}\) \(=\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{8}-1}}=\sqrt{\sqrt{2}+2+\sqrt{3+2\sqrt{2}}}\)

\(=\sqrt{\sqrt{2}+2+\sqrt{(2+1+2\sqrt{2}}}=\sqrt{\sqrt{2}+2+\sqrt{(\sqrt{2}+1)^2}}=\sqrt{\sqrt{2}+2+\sqrt{2}+1}\)

\(=\sqrt{3+2\sqrt{2}}=\sqrt{(\sqrt{2}+1)^2}=\sqrt{2}+1\)

Bình luận (0)
AH
20 tháng 7 2020 lúc 11:44

5.

\(\sqrt{6+2\sqrt{5}-\sqrt{29+12\sqrt{5}}}=\sqrt{6+2\sqrt{5}-\sqrt{20+9+2\sqrt{20.9}}}\)

\(=\sqrt{6+2\sqrt{5}-\sqrt{(\sqrt{20}+3)^2}}=\sqrt{6+2\sqrt{5}-(\sqrt{20}+3)}=\sqrt{3}\)

6.

\(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}-\sqrt{\sqrt{49}+\sqrt{40}}\)

\(=\sqrt{8+2\sqrt{2}+2\sqrt{5}+2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

\(=\sqrt{(2+5+2\sqrt{2.5})+2(\sqrt{2}+\sqrt{5})+1}-\sqrt{2+5+2\sqrt{2.5}}\)

\(=\sqrt{(\sqrt{2}+\sqrt{5})^2+2(\sqrt{2}+\sqrt{5})+1}-\sqrt{(\sqrt{2}+\sqrt{5})^2}\)

\(=\sqrt{(\sqrt{2}+\sqrt{5}+1)^2}-\sqrt{(\sqrt{2}+\sqrt{5})^2}=|\sqrt{2}+\sqrt{5}+1|-|\sqrt{2}+\sqrt{5}|=1\)

Bình luận (0)
H24
Xem chi tiết
H9
14 tháng 8 2023 lúc 9:24

\(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)

\(=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\sqrt{3}+2\sqrt{7}}\)

\(=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}\)

\(=\dfrac{\sqrt{2}}{2}\)

___________

\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}+\sqrt{8}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

__________

\(\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)

\(=\dfrac{3\cdot2\sqrt{2}-2\cdot2\sqrt{3}+2\sqrt{5}}{3\cdot3\sqrt{2}-2\cdot3\sqrt{3}+3\sqrt{5}}\)

\(=\dfrac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}\)

\(=\dfrac{2\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}{3\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}\)

\(=\dfrac{2}{3}\)

Bình luận (0)
NT
14 tháng 8 2023 lúc 9:17

a: \(=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\dfrac{\sqrt{2}}{2}\)

b: \(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+2\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+2}=1+\sqrt{2}\)

c: \(=\dfrac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\dfrac{2}{3}\)

Bình luận (0)
TH
Xem chi tiết
HA
Xem chi tiết
LL
20 tháng 9 2021 lúc 10:36

a) \(=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}-1-\sqrt{5}-1=-2\)

b) \(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(1+\sqrt{3}\right)^2}=2+\sqrt{3}-1-\sqrt{3}=1\)

c) \(=\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}=\sqrt{7}+1+\sqrt{7}-1=2\sqrt{7}\)

d) \(=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{5}+\sqrt{2}-\sqrt{2}+1=\sqrt{5}+1\)

Bình luận (0)