Cho \(a,b>0\), tìm : \(MinP=\dfrac{a}{b}+\dfrac{b}{a}+4\sqrt{2}\dfrac{a+b}{\sqrt{a^2+b^2}}\)
Cho \(a,b>0\), tìm: \(MinP=\dfrac{a}{b}+\dfrac{b}{a}+4\sqrt{2}\cdot\dfrac{a+b}{\sqrt{a^2+b^2}}\)
Cho \(a,b,c>\dfrac{9}{4}.\)
Tìm \(MinP=\dfrac{a}{2\sqrt{b}-3}+\dfrac{b}{2\sqrt{c}-3}+\dfrac{c}{2\sqrt{a}-3}\)
Lời giải:
Với điều kiện đã cho thì hiển nhiên mẫu dương.
Áp dụng BĐT Cauchy-Schwarz ta có:
\(M=\frac{a^2}{2a\sqrt{b}-3a}+\frac{b^2}{2b\sqrt{c}-3b}+\frac{c^2}{2c\sqrt{a}-3c}\)\(\geq \frac{(a+b+c)^2}{2(a\sqrt{b}+b\sqrt{c}+c\sqrt{a})-3(a+b+c)}\)
Áp dụng BĐT Bunhiacopxky kết hợp BĐT AM-GM:
\((a\sqrt{b}+b\sqrt{c}+c\sqrt{a})^2\leq (a+b+c)(ab+bc+ac)\)
\(\leq (a+b+c).\frac{(a+b+c)^2}{3}=\frac{(a+b+c)^3}{3}\)
\(\Rightarrow a\sqrt{b}+b\sqrt{c}+c\sqrt{a}\leq \sqrt{\frac{(a+b+c)^3}{3}}\)
\(\Rightarrow M\geq \frac{(a+b+c)^2}{2\sqrt{\frac{(a+b+c)^3}{3}}-3(a+b+c)}\)
Đặt \(\sqrt{\frac{a+b+c}{3}}=t(t>\frac{3}{2})\)\(\Rightarrow a+b+c=3t^2\)
Ta có:
\(P\geq\frac{9t^4}{6t^3-9t^2}=\frac{3t^2}{2t-3}\)
\(\Leftrightarrow P\geq \frac{\frac{3}{4}(2t-3)(2t+3)}{2t-3}+\frac{27}{4(2t-3)}\)
\(\Leftrightarrow P\geq \frac{3}{4}(2t+3)+\frac{27}{4(2t-3)}=\frac{3}{4}(2t-3)+\frac{27}{4(2t-3)}+\frac{9}{2}\)
Áp dụng BĐT AM-GM:
\(\frac{3}{4}(2t-3)+\frac{27}{4(2t-3)}\geq 2\sqrt{\frac{3}{4}.\frac{27}{4}}=\frac{9}{2}\)
\(\Rightarrow P\geq \frac{9}{2}+\frac{9}{2}=9\)
Vậy \(P_{\min}=9\)
Đặt \(\left\{{}\begin{matrix}\sqrt{a}=x\\\sqrt{b}=y\\\sqrt{c}=z\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{x^2}{2y-3}+\dfrac{y^2}{2z-3}+\dfrac{z^2}{2x-3}\)
\(\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)-9}\ge9\)
Vì \(\dfrac{t^2}{2t-9}-9=\dfrac{\left(t-9\right)^2}{2t-9}\ge0\) (với \(t=x+y+z\))
# cách khác:
Áp dụng AM-GM: \(\dfrac{a}{2\sqrt{b}-3}+\left(2\sqrt{b}-3\right)\ge2\sqrt{a}\)
Thiết lập tương tự rồi cộng lại ta được
\(VT+2\sqrt{a}+2\sqrt{b}+2\sqrt{c}-9\ge2\sqrt{a}+2\sqrt{b}+2\sqrt{c}\)
\(\Rightarrow VT\ge9\)
Dấu = xảy ra tại a=b=c=9
Cho a,b là hai số dương thỏa mãn \(\sqrt{ab}=\dfrac{a+b}{a-b}\) .Tìm \(MinP=ab+\dfrac{a-b}{\sqrt{ab}}\)
Lời giải:
Hiển nhiên $a-b>0$.
Ta có:
\(P=\sqrt{ab}.\sqrt{ab}+\frac{a-b}{\sqrt{ab}}=\sqrt{ab}.\frac{a+b}{a-b}+\frac{a-b}{\sqrt{ab}}\geq 2\sqrt{a+b}\) theo BĐT AM-GM.
Mặt khác:
Từ ĐKĐB suy ra \(ab(a-b)^2=(a+b)^2\)
\(\Leftrightarrow ab[(a+b)^2-4ab]=(a+b)^2\)
Đặt $a+b=x; ab=y$ với $x,y>0; x^2\geq 4y$ thì:
\(y(x^2-4y)=x^2\Leftrightarrow x^2(y-1)=4y^2\)
Hiển nhiên $y>1$
$\Rightarrow x^2=\frac{4y^2}{y-1}=\frac{4(y^2-1)}{y-1}+\frac{4}{y-1}$
$=4(y+1)+\frac{4}{y-1}=4(y-1)+\frac{4}{y-1}+8$
$\geq 2\sqrt{4(y-1).\frac{4}{y-1}}+8=16$ (AM-GM)
$\Rightarrow x\geq 4$ hay $a+b\geq 4$
Do đó: $P\geq 2\sqrt{a+b}\geq 2\sqrt{4}=4$
Vậy $P_{\min}=4$
Giá trị này đạt tại $(a,b)=(2+\sqrt{2}, 2-\sqrt{2})$
ta có \(\sqrt{ab}=\dfrac{a+b}{a-b}=>ab=\dfrac{\left(a+b\right)^2}{\left(a-b\right)^2}\)
=>P=\(ab+\dfrac{a-b}{\sqrt{ab}}=\dfrac{\left(a+b\right)^2}{\left(a-b\right)^2}+\dfrac{a-b}{\dfrac{a+b}{a-b}}=\dfrac{\left(a+b\right)^2}{\left(a-b\right)^2}+\dfrac{\left(a-b\right)^2}{a+b}\)
áp dụng BDT AM-GM ta có \(\dfrac{\left(a+b\right)^2}{\left(a-b\right)^2}+\dfrac{\left(a-b\right)^2}{a+b}\ge\sqrt{\dfrac{\left(a+b\right)^2}{\left(a-b\right)^2}.\dfrac{\left(a-b\right)^2}{a+b}}=2\sqrt{a+b}\left(1\right)\)
lại có \(\sqrt{ab}=\dfrac{a+b}{a-b}=>a+b=\sqrt{ab}.\left(a-b\right)=>2.\left(a+b\right)=2.\sqrt{ab}.\left(a-b\right)\)
áp dụng BDT AM-GM ta được \(2\left(a+b\right)=2.\sqrt{ab}.\left(a-b\right)\le\dfrac{\left(2\sqrt{ab}\right)^2+\left(a-b\right)^2}{2}=\dfrac{4ab+a^2-2ab+b^2}{2}\)
=\(\dfrac{\left(a+b\right)^2}{2}\)
=>\(2\left(a+b\right)\le\dfrac{\left(a+b\right)^2}{2}=>a+b\ge4\left(2\right)\)
từ (1)(2)=>\(\dfrac{\left(a+b\right)^2}{\left(a-b\right)^2}+\dfrac{\left(a-b\right)^2}{a+b}\ge2\sqrt{a+b}\ge4\)
dấu '=' xảy ra \(\Leftrightarrow\)a=2\(+\sqrt{2}\), b=\(2-\sqrt{2}\)
vậy MIn P=4 khi (a,b)=(2+\(\sqrt{2};2-\sqrt{2}\))
Cho a,b,c > 0 thỏa mãn \(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}=3\). Chứng minh rằng:
\(N=\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}+\dfrac{c^4}{a^2}\ge3\)
Áp dụng \(x^2+y^2+z^2\ge xy+yz+zx\) và \(x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^2\)
\(N\ge\dfrac{a^2b}{c}+\dfrac{b^2c}{a}+\dfrac{c^2a}{b}\ge\dfrac{1}{3}\left(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}\right)^2=3\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
1. Cho \(x,y,z>0\) và \(x^3+y^2+z=2\sqrt{3}+1\). Tìm GTNN của biểu thức \(P=\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\)
2. Cho \(a,b>0\). Tìm GTNN của biểu thức \(P=\dfrac{8}{7a+4b+4\sqrt{ab}}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
1) Áp dụng bđt Cauchy cho 3 số dương ta có
\(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)
\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)
\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)
Cộng (1);(2);(3) theo vế ta được
\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)
\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)
\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)
2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)
Dấu"=" khi a = 4b
nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)
Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
Đặt \(\sqrt{a+b}=t>0\) ta được
\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)
\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)
Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)
nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)
khi đó a + b = 1
mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
cho a, b, c ≥ 0 thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\) . Tìm GTNN của
\(M=\sqrt{\dfrac{a+b}{2}}+\sqrt{\dfrac{b+c}{2}}+\sqrt{\dfrac{c+a}{2}}\)
\(M\ge\dfrac{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}}{2}+\dfrac{\sqrt{\left(\sqrt{b}+\sqrt{c}\right)^2}}{2}+\dfrac{\sqrt{\left(\sqrt{c}+\sqrt{a}\right)^2}}{2}\)
\(M\ge\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho a,b,c>0 tm a+b+c=5. \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\).
C/m\(\dfrac{\sqrt{a}}{2+a}+\dfrac{\sqrt{b}}{2+b}+\dfrac{\sqrt{c}}{2+c}=\dfrac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
Hai bài giống hệt nhau về cách làm:
Cho a, b, c > 0 thoả mãn: \(a b c=\sqrt{a} \sqrt{b} \sqrt{c}=2\). Chứng minh rằng: \(\dfrac{\sqrt{a}}{a 1} \dfrac{\sqrt{... - Hoc24
Cho A = \(\dfrac{x+2\sqrt{x}}{x}\); B = \(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)(ĐKXĐ: x > 0). Tìm x nguyên để \(\dfrac{A}{B}< \dfrac{7}{4}\).
\(P=\dfrac{A}{B}=\sqrt{x}+1\)
P<7/4
=>căn x<3/4
=>0<x<9/16
Cho a, b, c > 0 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) . Tìm MAX của :
A= \(\dfrac{1}{\sqrt{a^2-ab+b^2}}+\dfrac{1}{\sqrt{b^2-bc+c^2}}+\dfrac{1}{\sqrt{c^2-ac+a^2}}\)
\(\dfrac{1}{\sqrt{a^2-ab+b^2}}< =\dfrac{1}{\sqrt{2ab-ab}}=\dfrac{1}{\sqrt{ab}}\)
\(\sqrt{\dfrac{1}{b^2-bc+c^2}}< =\dfrac{1}{\sqrt{bc}};\sqrt{\dfrac{1}{c^2-ac+c^2}}< =\dfrac{1}{\sqrt{ac}}\)
=>P<=1/a+1/b+1/c=3
Dấu = xảy ra khi a=b=c=1