. Cho ∠ABC, đường cao AH, trung tuyến AM = AB. Chứng minh: tanB = 3 tanC
Cho △ ABC có B, C là các góc nhọn, vẽ đường cao AH. Chứng minh
\(\overrightarrow{AH}=\frac{tanB}{tanB+tanC}\overrightarrow{AB}+\frac{tanC}{tanB+tanC}\overrightarrow{AC}\)
Cho tam giác ABC nhọn, đường cao AD, BE cắt nhau tại H. Đường trung tuyến AM. G là trọng tâm tam giác ABC. Cho HG song song BC. Chứng minh TanB*TanC=3
Cho tam giác ABC vuông tại A có đường cao AH. Gọi M và N lần lượt là hình chiếu của H lên AB,AC.
a) Biết rằng AB=12 cm, BC=20cm. Tính CH và AH ?
b) Chứng minh: AM.AB=AN.AC
c) Chứng minh tanB + tanC = BC/AH
b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
Cho ∆ABC vuông tại A, đường cao AH, biết AB=100cm, BH=5cm. C/m tanB=3 tanC
\(AB^2=BH.BC\) (theo hệ thức lượng trong tam giác vuông)
\(\Rightarrow BC=\dfrac{AB^2}{BH}=\dfrac{100^2}{5}=2000\left(cm\right)\)
\(\Rightarrow HC=BC-HB=2000-5=1995\left(cm\right)\)
\(AH^2=BH.HC\Leftrightarrow AH^2=1995.5\Leftrightarrow AH=5\sqrt{399}\)
\(tanB=\dfrac{AH}{HB}\)
\(tanC=\dfrac{AH}{HC}\)
\(\)\(\Rightarrow\dfrac{tanB}{tanC}=\dfrac{HC}{HB}=\dfrac{1995}{5}=399\)
\(\Rightarrow tanB=399.tanC\left(đpcm\right)\)
\(\Rightarrowđpcm\) \(\)
Cho \(\Delta ABC\), AB < AC đường trung tuyến AM, đường cao AH.
a, CMR: Nếu AM = AB thì \(tanC=\frac{1}{3}tanB\).
b, Đặt \(\widehat{MAH}=\alpha\). Tìm hệ thức liên hệ giữa \(tan\alpha\) và \(cotB;cotC\) .
Cho \(\Delta ABC\), AB < AC đường trung tuyến AM, đường cao AH.
a, CMR: Nếu AM = AB thì \(tanC=\frac{1}{3}tanB\).
b, Đặt \(\widehat{MAH}=\alpha\). Tìm hệ thức liên hệ giữa \(tan\alpha\) và \(cotB;cotC\) .
Cho tam giác ABC vuông tại A, đường cao AH chia BC thành hai đoạn, BH=5cm, CH=20cm. Chứng minh tanB=4 tanC
Câu hỏi của Đỗ Lê Thanh Thảo - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
Cho tam giác ABC nhọn,đường cao AD, trung tuyến AM.Gọi H,G lân lượt là trọng tâm, trực tâm. Chứng minh: a) tam giác BHD đồng dạng Tam giác ACD
b)HG//BC <=> tanB. tanC =3
Cho tam giác ABC có đường trung tuyến AM bằng cạnh AC. Tìm sự liên kết giữa tanB và tanC?
Từ A vẽ đường cao AH của tam giác ABC, từ M vẽ đường thẳng vuông góc với BC cắt AC tại N, Ta có các biểu thức sau:
tgC=AH/CH=AH/(1/4(BC))=4AH/BC (1)
tgB=MN/MB=MN/(1/2(BC))=2MN/BC. (2)
tgB/tg C=(2MN/BC)/(4AH/BC)= MN/2AH (3)
Theo định lý Talet thì MN/AH=2/3 do đó thay MN=2AH/3 vào biểu thức (3) ta có
tgB/tgC=1/3