Những câu hỏi liên quan
H24
Xem chi tiết
HQ
5 tháng 7 2021 lúc 22:17

\(x^2-2x-3=mx-2m-2\)

\(x^2-2x+2m-mx-1=0\)

\(x^2-\left(m+2\right)x+2m-1=0\)

\(\Delta=\left(m+2\right)^2-4\left(2m-1\right)\)

\(\Delta=m^2+4m+4-8m+4\)

\(\Delta=m^2-4m+8\)

\(\Delta=\left(m-2\right)^2+4>0\)<=> có 2 n0 pb

\(\hept{\begin{cases}xA+xB=-\frac{b}{a}=\frac{m+2}{1}=m+2\\xA.xB=\frac{c}{a}=2m-1\end{cases}}\)

\(xA^2+xB^2=10\)

\(\left(xA+xB\right)^2-2xA.xB=10\)

\(\left(m+2\right)^2-2\left(2m-1\right)=10\)

\(m^2+2m+4-4m+2=10\)

\(m^2-2m+6=10\)

\(m^2-2m-4=0\)

\(\Delta=2^2-\left(-16\right)=20\)

\(\sqrt{\Delta}=2\sqrt{5}\)

\(x_1=\frac{2+2\sqrt{5}}{2}=1+\sqrt{5}\)

\(x_2=\frac{2-2\sqrt{5}}{2}=1-\sqrt{5}\)

Bình luận (0)
 Khách vãng lai đã xóa
KT
Xem chi tiết
NL
13 tháng 1 2022 lúc 18:21

a. Bạn tự giải

b. Pt hoành độ giao điểm: \(x^2=mx-m+1\Leftrightarrow x^2-mx+m-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1-m\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=m-1\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x_1=1\\x_2=m-1\end{matrix}\right.\) \(\Rightarrow1=9\left(m-1\right)\Rightarrow m=\dfrac{10}{9}\)

TH2: \(\left\{{}\begin{matrix}x_1=m-1\\x_2=1\end{matrix}\right.\) \(\Rightarrow m-1=9.1\Rightarrow m=10\)

Bình luận (0)
NT
Xem chi tiết
TT
Xem chi tiết
NT
4 tháng 4 2019 lúc 20:43

Tham khảo:Câu hỏi của Nam Võ - Toán lớp 9 | Học trực tuyến

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 4 2017 lúc 4:51

Đáp án A

Bình luận (0)
BB
Xem chi tiết
NL
24 tháng 1 2022 lúc 22:23

Pt hoành độ giao điểm: \(x^2-mx-1=0\)

\(ac=-1< 0\Rightarrow\) (d) luôn cắt (P) tại 2 điểm pb

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-1\end{matrix}\right.\)

\(y_1+y_2=y_1y_2\Leftrightarrow mx_1+1+mx_2+1=x_1^2x_2^2\)

\(\Leftrightarrow m\left(x_1+x_2\right)+2=1\)

\(\Leftrightarrow m^2+1=0\) (vô nghiệm)

Vậy ko tồn tại m thỏa mãn đều bài

\(x_M=\dfrac{x_A+x_B}{2}=\dfrac{m}{2}\) ; 

\(y_M=\dfrac{y_A+y_B}{2}=\dfrac{mx_A+1+mx_B+1}{2}=\dfrac{m\left(x_A+x_B\right)+2}{2}=\dfrac{m^2+2}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}m=2x_M\\m^2=2y_M-2\end{matrix}\right.\)

\(\Rightarrow\left(2x_M\right)^2=2y_M-2\)

\(\Rightarrow y_M=2x_M^2+1\)

\(\Rightarrow\) Quỹ tích M là parabol có pt \(y=2x^2+1\)

Bình luận (0)
H24
Xem chi tiết
KT
Xem chi tiết
NT
27 tháng 2 2022 lúc 20:35

a: Phương trình hoành độ giao điểm là: \(x^2-mx+m-1=0\)

\(\Delta=\left(-m\right)^2-4\cdot\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)

Để (P) cắt (d) tại hai điểm phân biệt thì m-2<>0

hay m<>2

b: \(\left|x_A-x_B\right|< 3\)

\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< 3\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2< 9\)

\(\Leftrightarrow m^2-4\left(m-1\right)< 9\)

\(\Leftrightarrow\left(m-2\right)^2-3< 0\)

=>(m+1)(m-5)<0

=>-1<m<5

Bình luận (0)
KT
Xem chi tiết
NT
27 tháng 2 2022 lúc 21:14

 

undefined

Bình luận (0)
VL
Xem chi tiết
NT
13 tháng 7 2021 lúc 12:42

1) Phương trình hoành độ của (P) và (d) là:

\(-x^2=mx-1\)

\(\Leftrightarrow-x^2-mx+1=0\)

a=-1; b=-m; c=1

Vì ac<0 nên (P) luôn cắt (d) tại hai điểm phân biệt với mọi m

2) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-m\right)}{-1}=-m\\x_1x_2=\dfrac{c}{a}=\dfrac{1}{-1}=-1\end{matrix}\right.\)

Ta có: \(x_1^3+x_2^3=-4\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=-4\)

\(\Leftrightarrow\left(-m\right)^3-3\cdot\left(-1\right)\cdot\left(-m\right)=-4\)

\(\Leftrightarrow-m^3-3m+4=0\)

\(\Leftrightarrow m^3+3m-4=0\)

\(\Leftrightarrow m^3-m+4m-4=0\)

\(\Leftrightarrow m\left(m-1\right)\left(m+1\right)+4\left(m-1\right)=0\)

\(\Leftrightarrow m-1=0\)

hay m=1

Bình luận (0)