Những câu hỏi liên quan
H24
Xem chi tiết
LM
Xem chi tiết
H24
2 tháng 12 2021 lúc 20:53

\(\left\{{}\begin{matrix}x^2y+xy^2=0\left(1\right)\\2x^2+3xy+2y^2=1\left(2\right)\end{matrix}\right.\)

\(pt\left(1\right)\Leftrightarrow xy\left(x+y\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\x=-y\end{matrix}\right.\)

Với \(x=0\) thế vào pt(2) ta được\(2.0^2+3.0.y+2y^2=1\Rightarrow2y^2=1\Rightarrow y^2=\dfrac{1}{2}\Rightarrow y=\dfrac{1}{\sqrt{2}}\)

Với \(y=0\) thế vào pt(2) ta được

\(2x^2+3.x.0+2.0^2=1\Rightarrow2x^2=1\Rightarrow x^2=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{\sqrt{2}}\)

Với \(x=-y\) thế vào pt(2) ta được

\(2\left(-y\right)^2+3\left(-y\right).y+2y^2=1\Rightarrow2y^2-3y^2+2y^2=1\Rightarrow y^2=1\Rightarrow\left[{}\begin{matrix}y=-1\Rightarrow x=1\\y=1\Rightarrow x=-1\end{matrix}\right.\)

vậy ...

 

 

 

Bình luận (0)
H24
Xem chi tiết
GB
Xem chi tiết
TT
Xem chi tiết
HM
26 tháng 7 2018 lúc 10:06

Ta có:

\(\left\{{}\begin{matrix}x^2+2y^2-3xy-2x+4y=0\\\left(x^2-5\right)^2=2x-2y+5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-2x\right)-\left(2xy-4y\right)-\left(xy-2y^2\right)=0\\\left(x^2-5\right)^2=2x-2y+5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x-2\right)-2y\left(x-2\right)-y\left(x-2y\right)=0\\\left(x^2-5\right)^2=2x-2y+5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(x-2y\right)-y\left(x-2y\right)=0\\\left(x^2-5\right)^2=2x-2y+5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-2\right)\left(x-2y\right)=0\\x^4-10x^2+25=2x-2y+5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-y-2=0\\x-2y=0\end{matrix}\right.\\x^4-10x^2+20-2x+2y=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=x-2\\x^4-10x^2+20-2x+2\left(x-2\right)=0\end{matrix}\right.\\\left\{{}\begin{matrix}y=\dfrac{x}{2}\\x^4-10x^2+20-2x+\dfrac{2x}{2}=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=x-2\\x^4-10x^2+16=0\end{matrix}\right.\\\left\{{}\begin{matrix}y=\dfrac{x}{2}\\x^4-10x^2-x+20=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=x-2\\\left(x^2-8\right)\left(x^2-2\right)=0\end{matrix}\right.\\\left\{{}\begin{matrix}y=\dfrac{x}{2}\\\left(x^2-x-5\right)\left(x^2+x-4\right)=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=x-2\\\left[{}\begin{matrix}x^2=8\\x^2=2\end{matrix}\right.\end{matrix}\right.\\\left\{{}\begin{matrix}y=\dfrac{x}{2}\\\left[{}\begin{matrix}x^2-x-5=0\\x^2+x-4=0\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=x-2\\\left[{}\begin{matrix}x=\sqrt{8}\\x=-\sqrt{8}\end{matrix}\right.\end{matrix}\right.\\\left\{{}\begin{matrix}y=x-2\\\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\\\left\{{}\begin{matrix}y=\dfrac{x}{2}\\\left[{}\begin{matrix}x=\dfrac{1+\sqrt{21}}{2}\\x=\dfrac{1-\sqrt{21}}{2}\end{matrix}\right.\end{matrix}\right.\\\left\{{}\begin{matrix}y=\dfrac{x}{2}\\\left[{}\begin{matrix}x=\dfrac{-1+\sqrt{17}}{2}\\x=\dfrac{-1-\sqrt{17}}{2}\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}y=\sqrt{8}-2\\x=\sqrt{8}\end{matrix}\right.\\\left\{{}\begin{matrix}y=-\sqrt{8}-2\\x=-\sqrt{8}\end{matrix}\right.\end{matrix}\right.\\\left[{}\begin{matrix}\left\{{}\begin{matrix}y=\sqrt{2}-2\\x=\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}y=-\sqrt{2}-2\\x=-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\\\left[{}\begin{matrix}y=\dfrac{1+\sqrt{21}}{4}\\x=\dfrac{1+\sqrt{21}}{2}\end{matrix}\right.\\\end{matrix}\right.\) (CÒN MỘT VÀI TRƯỜNG HỢP BÊN TRÊN MK KO VIẾT HẾT ĐƯỢC BẠN TỰ TÌM Y NHA)

Bình luận (0)
TT
Xem chi tiết
KZ
27 tháng 2 2018 lúc 20:18

(1) + rút y từ pt (2) thay vào pt (1), ta được pt bậc hai 1 ẩn x, dễ rồi, tìm x rồi suy ra y

(2) + (3)

+ pt nào có nhân tử chung thì đặt nhân tử chung (thật ra chỉ có pt (2) của câu 2 là có nhân từ chung)

+ trong hệ, thấy biểu thức nào giống nhau thì đặt cho nó 1 ẩn phụ

VD hệ phương trình 3: đặt a= x+y ; b= căn (x+1)

+ khi đó ta nhận được một hệ phương trình bậc nhất hai ẩn, giải hpt đó rồi suy ra x và y

Bình luận (0)
LY
Xem chi tiết
NL
12 tháng 8 2020 lúc 23:04

\(x^2-\left(3y-2\right)x+2y^2-4y=0\)

\(\Delta=\left(3y-2\right)^2-4\left(2y^2-4y\right)=y^2+4y+4=\left(y+2\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{3y-2+y+2}{2}=2y\\x=\frac{3y-2-y-2}{2}=y-2\end{matrix}\right.\)

Thế xuống dưới:

\(\Rightarrow\left[{}\begin{matrix}4y^2+y^2-2y^2+2y-5=0\\\left(y-2\right)^2+y^2-y\left(y-2\right)+2y-5=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
MN
Xem chi tiết
NL
11 tháng 10 2020 lúc 14:08

\(x^2-3y.x+2y^2-y-1=0\)

\(\Delta=9y^2-4\left(2y^2-y-1\right)=y^2+4y+4=\left(y+2\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{3y+y+2}{2}=2y+1\\x=\frac{3y-\left(y+2\right)}{2}=y-1\end{matrix}\right.\)

Thế xuống pt dưới:

\(\Rightarrow\left[{}\begin{matrix}\left(2y+1\right)^2+y^2-y-3=0\\\left(y-1\right)^2+y^2-y-3=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
 Khách vãng lai đã xóa
TA
Xem chi tiết
NL
12 tháng 12 2020 lúc 19:54

 \(\Leftrightarrow xy\left(x+y\right)+\left(x+y\right)^2-2xy=4\)

\(\Leftrightarrow xy\left(x+y-2\right)+\left(x+y-2\right)\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y-2\right)\left(x+y+xy+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y-2=0\left(1\right)\\x+y+xy+2=0\left(2\right)\end{matrix}\right.\)

Xét (1) \(\Leftrightarrow y=2-x\) thay vào pt đầu: ....

Xét (2): kết hợp với pt đầu ta được:

\(\left\{{}\begin{matrix}x+y+xy+2=0\\\left(x+y\right)^3-3xy\left(x+y\right)-3xy=-1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\)

\(\Rightarrow\left\{{}\begin{matrix}a+b+2=0\\a^3-3ab-3b=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b+2=0\\\left(a+1\right)\left(a^2-a+1\right)-3b\left(a+1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b+2=0\\\left(a+1\right)\left(a^2-a+1-3b\right)=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)