Violympic toán 9

TA

giải hệ pt\(\left\{{}\begin{matrix}x^3+y^3-3xy=-1\\x^2y+y^2x+x^2+y^2=4\end{matrix}\right.\)

NL
12 tháng 12 2020 lúc 19:54

 \(\Leftrightarrow xy\left(x+y\right)+\left(x+y\right)^2-2xy=4\)

\(\Leftrightarrow xy\left(x+y-2\right)+\left(x+y-2\right)\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y-2\right)\left(x+y+xy+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y-2=0\left(1\right)\\x+y+xy+2=0\left(2\right)\end{matrix}\right.\)

Xét (1) \(\Leftrightarrow y=2-x\) thay vào pt đầu: ....

Xét (2): kết hợp với pt đầu ta được:

\(\left\{{}\begin{matrix}x+y+xy+2=0\\\left(x+y\right)^3-3xy\left(x+y\right)-3xy=-1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\)

\(\Rightarrow\left\{{}\begin{matrix}a+b+2=0\\a^3-3ab-3b=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b+2=0\\\left(a+1\right)\left(a^2-a+1\right)-3b\left(a+1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b+2=0\\\left(a+1\right)\left(a^2-a+1-3b\right)=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TT
Xem chi tiết
NH
Xem chi tiết
MS
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PQ
Xem chi tiết
H24
Xem chi tiết
GB
Xem chi tiết