Violympic toán 9

LY

Giải hệ phương trình: \(\left\{{}\begin{matrix}x^2+2y^2-3xy+2x-4y=0\\x^2+y^2-xy+2y-5=0\end{matrix}\right.\)

NL
12 tháng 8 2020 lúc 23:04

\(x^2-\left(3y-2\right)x+2y^2-4y=0\)

\(\Delta=\left(3y-2\right)^2-4\left(2y^2-4y\right)=y^2+4y+4=\left(y+2\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{3y-2+y+2}{2}=2y\\x=\frac{3y-2-y-2}{2}=y-2\end{matrix}\right.\)

Thế xuống dưới:

\(\Rightarrow\left[{}\begin{matrix}4y^2+y^2-2y^2+2y-5=0\\\left(y-2\right)^2+y^2-y\left(y-2\right)+2y-5=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
LV
Xem chi tiết
NN
Xem chi tiết
PQ
Xem chi tiết
KZ
Xem chi tiết
JN
Xem chi tiết
PT
Xem chi tiết
GB
Xem chi tiết
NH
Xem chi tiết