Cho A= \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) Tìm \(x\in z\) để A có giá trị là số nguyên
Bài 13 : Cho A =\(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\). Tìm x thuộc Z để A có giá trị là một số nguyên
Để A có giá trị là một số nguyên thì:
\(\left(\sqrt{x}+1\right)⋮\left(\sqrt{x}-3\right)\)
\(\Leftrightarrow\left(\sqrt{x}-3\right)+4⋮\left(\sqrt{x}-3\right)\)
\(\Leftrightarrow4⋮\left(\sqrt{x}-3\right)\)
Vì \(x\in Z\) nên \(\left(\sqrt{x}-3\right)\inƯ\left(4\right)=\left\{\pm1,\pm2,\pm4\right\}\)
Ta có bảng sau:
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -1 |
x | 16 | 4 | 25 | 1 | 49 | (loại) |
Vậy ....
Ta có: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3}{\sqrt{x}-3}=\dfrac{4}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)
Để A có giá trị là một số nguyên khi:
\(4⋮\sqrt{x}-3\) hay \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Do đó:
\(\sqrt{x}-3=-1\Rightarrow\sqrt{x}=-1+3=2\Rightarrow x=4\)
\(\sqrt{x}-3=1\Rightarrow\sqrt{x}=1+3=4\Rightarrow x=16\)
\(\sqrt{x}-3=-2\Rightarrow\sqrt{x}=-2+3=1\Rightarrow x=1\)
\(\sqrt{x}-3=2\Rightarrow\sqrt{x}=2+3=5\Rightarrow x=25\)
\(\sqrt{x}-3=-4\Rightarrow\sqrt{x}=-4+3=-1\) ( loại )
\(\sqrt{x}-3=4\Rightarrow\sqrt{x}=4+3=7\Rightarrow x=49\)
Vậy để A là một số nguyên khi \(x\in\left\{4;16;1;25;49\right\}\)
Cho \(B=\dfrac{2}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{x-4\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
Tìm \(x\in Z\) để B có giá trị nguyên
\(B=\dfrac{2}{\sqrt{x}-3}+\dfrac{2\sqrt{x}}{x-4\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\dfrac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
Để B nguyên thì \(\sqrt{x}-3\in\left\{1;-1;5\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;2;8\right\}\)
hay \(x\in\left\{16;4;64\right\}\)
cho\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)tìm số nguyên x để A có giá trị là một số nguyên
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)
mà \(\sqrt{x}-3⋮\sqrt{x}-3\)
nên \(4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\inƯ\left(4\right)\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)
mà \(\sqrt{x}\ge0\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x}\in\left\{1;2;4;5;7\right\}\)
hay \(x\in\left\{1;4;16;25;49\right\}\)(nhận)
Vậy: Để A nguyên thì \(x\in\left\{1;4;16;25;49\right\}\)
Cho biểu thức: Q = \(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-3\dfrac{\sqrt{x}-1}{x-5\sqrt{x}+6}\).
a) Tìm điều kiện xác định và rút gọn Q.
b) Tìm các giá trị của x để Q < -1.
c) Tìm các giá trị của x \(\in\) Z sao cho 2Q \(\in\) Z.
a, đk: \(x\ge0,x\ne9,x\ne4\)
\(Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-4-x+3\sqrt{x}-\sqrt{x}+3-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2-\sqrt{x}}{-\left(\sqrt{x}-3\right)\left(2-\sqrt{x}\right)}=\dfrac{-1}{\sqrt{x}-3}\)
b,\(Q< -1=>\dfrac{-1}{\sqrt{x}-3}+1< 0< =>\dfrac{-1+\sqrt{x}-3}{\sqrt{x}-3}< 0\)
\(< =>\dfrac{\sqrt{x}-4}{\sqrt{x}-3}< 0\)
\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}\sqrt{x}-4>0\\\sqrt{x}-3< 0\end{matrix}\right.\\\left[{}\begin{matrix}\sqrt{x}-4< 0\\\sqrt{x}-3>0\end{matrix}\right.\end{matrix}\right.\)\(< =>\left[{}\begin{matrix}\left\{{}\begin{matrix}x>16\\x< 9\end{matrix}\right.\\\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\end{matrix}\right.\)\(< =>9< x< 16\)
c, \(=>2Q=\dfrac{-2}{\sqrt{x}-3}=1+\dfrac{1}{\sqrt{x}-3}\in Z\)
\(< =>\sqrt{x}-3\inƯ\left(1\right)=\left\{\pm1\right\}\)\(=>x\in\left\{16;4\right\}\)(loại 4)
=>x=16
a) \(Q=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-3\dfrac{\sqrt{x}-1}{x-5\sqrt{x}+6}\)
Ta có \(x-5\sqrt{x}+6=\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-3>0\\\sqrt{x}-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>9\\x>2\end{matrix}\right.\) \(\Leftrightarrow x>9\)
\(Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-3\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\left(x-4\right)-\left(x-2\sqrt{x}-3\right)-\left(3\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\) \(=\dfrac{-\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\) \(=\dfrac{-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\) \(=\dfrac{-1}{\left(\sqrt{x}-3\right)}=\dfrac{1}{3-\sqrt{x}}\)
b) \(Q< -1\Leftrightarrow\dfrac{1}{3-\sqrt{x}}< -1\) \(\Leftrightarrow\dfrac{1}{3-\sqrt{x}}+1< 0\) \(\Leftrightarrow\dfrac{4-\sqrt{x}}{3-\sqrt{x}}< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4-\sqrt{x}>0\\3-\sqrt{x}< 0\end{matrix}\right.\\\left\{{}\begin{matrix}4-\sqrt{x}< 0\\3-\sqrt{x}>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\\\left\{{}\begin{matrix}x>16\\x< 9\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow9< x< 16\)
Vậy để \(Q< -1\) thì \(S=\left\{x/9< x< 16\right\}\)
c) \(2Q\in Z\Leftrightarrow\dfrac{2}{3-\sqrt{x}}\in Z\)
\(\Rightarrow3-\sqrt{x}\inƯ\left(2\right)\)\(\Leftrightarrow\left\{{}\begin{matrix}3-\sqrt{x}=2\\3-\sqrt{x}=-2\\3-\sqrt{x}=1\\3-\sqrt{x}=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=25\\x=4\\x=16\end{matrix}\right.\)
Kết hợp với ĐKXĐ,ta có để \(2Q\in Z\) thì \(x\in\left\{16;25\right\}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{9;4\right\}\end{matrix}\right.\)
Ta có: \(Q=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{3\sqrt{x}-3}{x-5\sqrt{x}+6}\)
\(=\dfrac{x-4-x+2\sqrt{x}+2-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{-\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{-1}{\sqrt{x}-3}\)
c) Để 2Q là số nguyên thì \(-2⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;2;5;1\right\}\)
\(\Leftrightarrow x\in\left\{16;25;1\right\}\)
Cho A= \(\dfrac{2}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\)và B= \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
a) biết P=B:A. Rút gọn P
b) Tìm x để P có giá trị là số nguyên
\(a,P=B:A\)
\(=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\right):\left(\dfrac{2}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\left(ĐKXĐ:x\ge0;x\ne9\right)\)
\(=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\right):\left[\dfrac{2\left(\sqrt{x}+3\right)+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]\)
\(=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\right):\left[\dfrac{3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{3\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}+3}{3}\)
\(b,\) Để \(P=\dfrac{\sqrt{x}+3}{3}\) có giá trị nguyên
thì \(\sqrt{x}+3⋮3\)
\(\Leftrightarrow\sqrt{x}+3\in B\left(3\right)\)
\(\Leftrightarrow\sqrt{x}\in B\left(3\right)\)
Kết hợp với điều kiện, ta được:
\(P\) nguyên khi \(x=m^2\left(m\in Z;m⋮3;m\ne3\right)\)
#Toru
a:
ĐKXĐ: x>=0; x<>9
\(A=\dfrac{2\sqrt{x}+6+\sqrt{x}-3}{\left(x-9\right)}=\dfrac{3\sqrt{x}+3}{x-9}\)
\(P=B:A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\cdot\dfrac{x-9}{3\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+3}{3}\)
b: P nguyên khi \(\sqrt{x}+3⋮3\)
=>\(\sqrt{x}\in B\left(3\right)\)
=>\(x=k^2\left(k\in Z;k⋮3\right)\)
Bài 1:Tìm x để BT có giá trị nguyên:
\(\dfrac{3\sqrt{x}+1}{2\sqrt{x}-1}\)
Bài 2:Cho A =\(\dfrac{2\sqrt{x}+1}{x+1}\)(với x≥0).Tìm x để A có giá trị nguyên
Bài 1:
Để biểu thức nhận giá trị nguyên thì \(3\sqrt{x}+1⋮2\sqrt{x}-1\)
\(\Leftrightarrow6\sqrt{x}+2⋮2\sqrt{x}-1\)
\(\Leftrightarrow2\sqrt{x}-1\in\left\{1;-1;5\right\}\)
\(\Leftrightarrow2\sqrt{x}\in\left\{2;0;6\right\}\)
hay \(x\in\left\{4;0;36\right\}\)
Cho biểu thức
A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) + \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)-\(\dfrac{3\sqrt{x}+1}{x-1}\)
a) Rút gọn A
b) Tính giá trị của A khi x = 4 - \(2\sqrt{3}\)
c) Tìm x để A = \(\dfrac{1}{2}\)
d) Tìm x để A < 1
e) Tìm x \(\in\) Z để A nhận giá trị nguyên
f) Tìm GTNN của A
Tìm x thuộc Z để biểu thức có giá trị nguyên: A=\(\dfrac{2\sqrt{x}+3}{3\sqrt{x}-1}\)
Để A nguyên thì \(2\sqrt{x}+3⋮3\sqrt{x}-1\)
\(\Leftrightarrow6\sqrt{x}+9⋮3\sqrt{x}-1\)
\(\Leftrightarrow3\sqrt{x}-1\in\left\{-1;1;11\right\}\)
\(\Leftrightarrow3\sqrt{x}\in\left\{0;12\right\}\)
hay \(x\in\left\{0;16\right\}\)
Cho biểu thức \(M=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{6\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\) với \(x\ge0;x\ne1\)
a. Rút gọn M
b. Tìm số nguyên x để M có giá trị là số nguyên
a) \(M=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{6\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\left(x\ge0,x\ne1\right)\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)-6\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)
b) \(M=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}=1-\dfrac{5}{\sqrt{x}+2}\in Z\)
\(\Rightarrow\sqrt{x}+2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Do \(\sqrt{x}\ge0\forall x\)
\(\Rightarrow\sqrt{x}\in\left\{3\right\}\Rightarrow x=9\left(tm\right)\)
Cho biểu thức A = \(\dfrac{2}{\sqrt{x}-3}\) + \(\dfrac{2\sqrt{x}}{x-4\sqrt{x}+3}\) + \(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
a, Rút gọn biểu thức A
b, Tìm x thuộc Z để biểu thức A nhận giá trị nguyên
\(a,A=\dfrac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\left(x\ge0;x\ne1;x\ne9\right)\\ A=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
\(b,A\in Z\Leftrightarrow\dfrac{\sqrt{x}-3+5}{\sqrt{x}-3}\in Z\Leftrightarrow1+\dfrac{5}{\sqrt{x}-3}\in Z\\ \Leftrightarrow\sqrt{x}-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ Mà.x\ge0\\ \Leftrightarrow\sqrt{x}\in\left\{2;4;8\right\}\\ \Leftrightarrow x\in\left\{4;16;64\right\}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\\x\ne1\end{matrix}\right.\)
\(A=\dfrac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
b) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}=1+\dfrac{5}{\sqrt{x}-3}\in Z\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Kết hợp đk
\(\Rightarrow x\in\left\{4;16;64\right\}\)