Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NH
Xem chi tiết
KZ
27 tháng 2 2018 lúc 19:47

mình biết tìm max thôi

\(y=\dfrac{1+x^4}{\left(1+x^2\right)^2}=\dfrac{1+x^4}{1+2x^2+x^4}-1+1=\dfrac{-2x^2}{1+2x^2+x^4}+1\le1\)

dấu ''=" xảy ra khi x=0

vậy GTLN của y bằng 1 khi x=0

Bình luận (0)
DH
Xem chi tiết
H24
31 tháng 8 2017 lúc 12:21

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Bình luận (0)
DA
Xem chi tiết
DN
Xem chi tiết
H24
28 tháng 7 2019 lúc 16:56

Tham khảo nhé :

Cho a b  0 và 3a + 5b = 12,Tìm GTLN của P = ab,Cho a b c  0 và abc = 1,Chứng minh (a + 1)(b + 1)(c + 1) = 8,Q = a^2 + b^2 + c^2,Toán học Lớp 8,bà i tập Toán học Lớp 8,giải bà i tập Toán học Lớp 8,Toán học,Lớp 8

Bình luận (9)
PB
Xem chi tiết
CT
28 tháng 11 2019 lúc 2:16

Bình luận (0)
LB
Xem chi tiết
NN
13 tháng 9 2017 lúc 12:35

Hình như sử dụng Bu-nhi -a hay sao ý

Bình luận (0)
NT
Xem chi tiết
LH
Xem chi tiết
H24
25 tháng 12 2018 lúc 21:23

Vì 3 ≤ x ≤ 7 => x - 3 ≥ 0; 7 - x ≥ 0

=> C ≥ 0

Dấu = xảy ra khi và chỉ khi x = 3 hoặc x = 7

C = (x - 3)(7 - x) ≤ \(\dfrac{1}{4}\)(x - 3 + 7 - x)2 = \(\dfrac{1}{4}\).42 = 4

Dấu "=" xảy ra <=> x - 3 = 7 - x <=> x = 5

Bình luận (2)
H24
25 tháng 12 2018 lúc 22:11

\(G=\left(x^2+\sqrt[3]{3}\right)+\left(\dfrac{2}{x^3}+\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}\right)-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{x^2.\sqrt[3]{3}}+3\sqrt[3]{\dfrac{2}{x^3}.\dfrac{2}{\sqrt{3}}.\dfrac{2}{\sqrt{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt[6]{3}.x+\dfrac{6}{\sqrt[3]{3}x}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{2\sqrt[6]{3}.x.\dfrac{6}{\sqrt[3]{3}x}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt{\dfrac{12\sqrt[6]{3}}{\sqrt[3]{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\)

Dấu "=" xảy ra khi và chỉ khi \(x=\sqrt[6]{3}\)

Bình luận (1)
H24
26 tháng 12 2018 lúc 20:49

Cô - si cho 5 số lên mạng search cách chứng minh nhé

\(G=\dfrac{1}{3}x^2+\dfrac{1}{3}x^2+\dfrac{1}{3}x^2+\dfrac{1}{x^3}+\dfrac{1}{x^3}\ge5\sqrt[5]{\dfrac{1}{3^3}.\dfrac{x^2.x^2.x^2}{x^3.x^3}}=5\sqrt[5]{\dfrac{1}{27}}\)

Dấu "=" xảy ra <=> \(\dfrac{1}{3}x^2=x^3\)

<=> \(x^5=3\)

<=> \(x=\sqrt[5]{3}\)

Bình luận (0)
PN
Xem chi tiết
NL
7 tháng 6 2020 lúc 14:10

\(C=\frac{4x^2+2x-2}{2\left(x^2-2x+2\right)}=\frac{9\left(x^2-2x+2\right)-5x^2+20x-20}{2\left(x^2-2x+2\right)}=\frac{9}{2}-\frac{5\left(x-2\right)^2}{2\left(x-1\right)^2+2}\le\frac{9}{2}\)

\(C_{max}=\frac{9}{2}\) khi \(x=2\)

\(C=\frac{4x^2+2x-2}{2\left(x^2-2x+2\right)}=\frac{-\left(x^2-2x+2\right)+5x^2}{2\left(x^2-2x+2\right)}=-\frac{1}{2}+\frac{5x^2}{2\left(x-1\right)^2+2}\ge-\frac{1}{2}\)

\(C_{min}=-\frac{1}{2}\) khi \(x=0\)

Câu D bạn coi lại đềm kết quả rất xấu: \(\frac{3-\sqrt{17}}{12}\le D\le\frac{3+\sqrt{17}}{12}\)

Bình luận (0)