Những câu hỏi liên quan
DV
Xem chi tiết
NT
17 tháng 12 2022 lúc 23:22

Đặt a/2019=b/2021=c/2023=k

=>a=2019k; b=2021k; c=2023k

(a-c)^2/4=(2023k-2019k)^2/4=(4k)^2/4=4k^2

(a-b)(b-c)=(2019k-2021k)(2021k-2023k)=4k^2

=>(a-c)^2/4=(a-b)(b-c)

Bình luận (0)
H24
Xem chi tiết
DL
Xem chi tiết
MH
4 tháng 1 2022 lúc 5:45

Ta có:

\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)

⇔ \(\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1\)

    \(=\dfrac{a+b+c+2d}{d}-1\)

⇔ \(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)

Nếu a+b+c+d=0

⇒a+b=−(c+d);c+b=−(a+d);c+d=−(a+b);a+d=−(c+b)

Thay vào M, ta có:

\(M=\dfrac{a+b}{-\left(a+b\right)}=\dfrac{b+c}{-\left(b+c\right)}=\dfrac{c+d}{-\left(c+d\right)}=\dfrac{a+d}{-\left(a+d\right)}=-1\)

Nếu a+b+c+d ≠0

⇒ \(a=b=c=d\)

Thay vào M, ta có

\(M=\dfrac{a+b}{a+b}=\dfrac{b+c}{b+c}=\dfrac{c+d}{c+d}=\dfrac{d+a}{d+a}=1\)

Bình luận (1)
NV
4 tháng 1 2022 lúc 8:34

\(\text{Cùng trừ mỗi tỉ số trên 1 đơn vị ta được:}\)

\(\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1=\dfrac{a+b+c+2d}{d}-1\) \(\Rightarrow\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)

\(\text{Từ đây ta suy ra 2 trường hợp:}\)

\(\text{Trường hợp 1:}\)

\(\text{Nếu }a+b+c+d\notin0\Rightarrow a=b=c=d\)

\(\Rightarrow M=1+1+1+1=1.4=4\)

\(\text{Trường hợp 2:}\)

\(\text{Nếu }a+b+c+d=0\text{ thì:}\)

\(a+b=-\left(c+d\right);b+c=-\left(d+a\right)\)

\(c+d=-\left(a+b\right);d+a=-\left(b+c\right)\)

\(\text{Do đó }M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Bình luận (0)
VT
Xem chi tiết
H24
Xem chi tiết
LL
6 tháng 11 2021 lúc 22:42

Đề bài \(S=\dfrac{a+b}{2c}+\dfrac{b+c}{3a}+\dfrac{c+a}{4b}\) đúng hơn chứ nhỉ?

Bình luận (1)
LL
6 tháng 11 2021 lúc 22:47

ĐKXĐ: \(\left\{{}\begin{matrix}b\ne-c\\c\ne-a\\a\ne-b\end{matrix}\right.\) và \(a,b,c\ne0\)

Áp dụng t/c dtsbn:

\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+c+a+a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}2a=b+c\\2b=c+a\\2c=a+b\end{matrix}\right.\)

\(\Rightarrow S=\dfrac{a+b}{2c}+\dfrac{b+c}{3a}+\dfrac{c+a}{4b}=\dfrac{2c}{2c}+\dfrac{2a}{3a}+\dfrac{2b}{4b}=1+\dfrac{2}{3}+\dfrac{1}{2}=\dfrac{13}{6}\)

Bình luận (1)
H24
Xem chi tiết
NL
27 tháng 12 2018 lúc 20:12

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ac}{a+c}\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{a+c}{ac}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{c}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}\\\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{c}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{b}=\dfrac{1}{a}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=c\\a=b\end{matrix}\right.\) \(\Rightarrow a=b=c\)

Thay vào M ta được:

\(M=\dfrac{ab+bc+ac}{a^2+b^2+c^2}=\dfrac{a.a+a.a+a.a}{a^2+a^2+a^2}=\dfrac{3a^2}{3a^2}=1\)

Bình luận (1)
LV
27 tháng 12 2018 lúc 20:16

theo đề bài ta có:

\(\Rightarrow\dfrac{abc}{ab+bc}=\dfrac{abc}{ab+ac}=\dfrac{abc}{bc+ab}\)

\(\Rightarrow ac+bc=ab+ac=bc+ab\)

\(\Rightarrow M=\dfrac{ab+bc+ca}{a^2+b^2+c^2}=\dfrac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

Bình luận (0)
NT
Xem chi tiết
HN
1 tháng 1 2018 lúc 20:26

Ta có \(\dfrac{ab}{a+b}\)=\(\dfrac{bc}{b+c}\)=\(\dfrac{ca}{c+a}\)

\(=>\)\(\dfrac{a+b}{ab}\)=\(\dfrac{b+c}{bc}\)=\(\dfrac{c+a}{ca}\)

\(=>\)\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)=\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)=\(\dfrac{1}{c}\)+\(\dfrac{1}{a}\)

\(=>\)\(\dfrac{1}{b}\)+\(\dfrac{1}{a}\)=\(\dfrac{1}{c}\)+\(\dfrac{1}{b}\)

\(\dfrac{1}{c}\)+\(\dfrac{1}{b}\)=\(\dfrac{1}{a}\)+\(\dfrac{1}{c}\)

\(\dfrac{1}{a}\)+\(\dfrac{1}{c}\)=\(\dfrac{1}{b}\)+\(\dfrac{1}{a}\)

\(=>\)\(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\)

\(=>\)a=b=c

Vậy: M=\(\dfrac{ab+bc+ca}{a^2+b^2+c^2}=\dfrac{a^2+a^2+a^2}{a^2+a^2+a^2}\)

= 1

Bình luận (0)
HN
27 tháng 12 2017 lúc 20:08

mình bt nè

Bình luận (2)
AH
Xem chi tiết
AH
28 tháng 10 2021 lúc 16:40

Lời giải:

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow \frac{abc}{c(a+b)}=\frac{abc}{a(b+c)}=\frac{bca}{b(c+a)}\)

\(\Leftrightarrow c(a+b)=a(b+c)=b(c+a)\)

\(\Leftrightarrow ac+bc=ab+ac=bc+ab\Leftrightarrow ab=bc=ac\)

\(\Rightarrow a=b=c\) (do $a,b,c>0$)

$\Rightarrow M=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1$

Bình luận (0)
NV
Xem chi tiết
NL
8 tháng 4 2021 lúc 22:43

\(\Leftrightarrow\left(1+ab+bc+ca\right)\left(\dfrac{1}{\left(a+b\right)\left(a+c\right)}+\dfrac{1}{\left(a+b\right)\left(b+c\right)}+\dfrac{1}{\left(a+c\right)\left(b+c\right)}\right)\le\dfrac{ab+bc+ca}{abc}\)

\(\Leftrightarrow\dfrac{2\left(1+ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{ab+bc+ca}{abc}\)

\(\Leftrightarrow\dfrac{2\left(1+ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{ab+bc+ca}{abc}\)

Áp dụng BĐT quen thuộc:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\dfrac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)=\dfrac{8}{9}\left(ab+bc+ca\right)\)

\(\Rightarrow\dfrac{2\left(1+ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9\left(1+ab+bc+ca\right)}{4\left(ab+bc+ca\right)}\)

Ta chỉ cần chứng minh:

\(\dfrac{9\left(1+ab+bc+ca\right)}{4\left(ab+bc+ca\right)}\le\dfrac{ab+bc+ca}{abc}\)

\(\Leftrightarrow4\left(ab+bc+ca\right)^2\ge9abc+9abc\left(ab+bc+ca\right)\)

Do \(3\left(ab+bc+ca\right)^2\ge9abc\left(a+b+c\right)=9abc\)

Nên ta chỉ cần chứng minh:

\(\left(ab+bc+ca\right)^2\ge9abc\left(ab+bc+ca\right)\)

\(\Leftrightarrow ab+bc+ca\ge9abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)

Hiển nhiên đúng do \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}=9\)

Bình luận (0)