Đại số lớp 7

DL

cho dãy tỉ số bằng nhau\(\dfrac{2a+b+c+d}{a}\) =\(\dfrac{a+2b+c+d}{b}\) =\(\dfrac{a+b+2c+d}{c}\)=\(\dfrac{a+b+c+2d}{d}\)

tính giá trị của biểu thức M= \(\dfrac{a+b}{c+d}=\dfrac{b+c}{d+a}=\dfrac{c+d}{a+b}=\dfrac{d+a}{b+c}\)

MH
4 tháng 1 2022 lúc 5:45

Ta có:

\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)

⇔ \(\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1\)

    \(=\dfrac{a+b+c+2d}{d}-1\)

⇔ \(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)

Nếu a+b+c+d=0

⇒a+b=−(c+d);c+b=−(a+d);c+d=−(a+b);a+d=−(c+b)

Thay vào M, ta có:

\(M=\dfrac{a+b}{-\left(a+b\right)}=\dfrac{b+c}{-\left(b+c\right)}=\dfrac{c+d}{-\left(c+d\right)}=\dfrac{a+d}{-\left(a+d\right)}=-1\)

Nếu a+b+c+d ≠0

⇒ \(a=b=c=d\)

Thay vào M, ta có

\(M=\dfrac{a+b}{a+b}=\dfrac{b+c}{b+c}=\dfrac{c+d}{c+d}=\dfrac{d+a}{d+a}=1\)

Bình luận (1)
NV
4 tháng 1 2022 lúc 8:34

\(\text{Cùng trừ mỗi tỉ số trên 1 đơn vị ta được:}\)

\(\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1=\dfrac{a+b+c+2d}{d}-1\) \(\Rightarrow\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)

\(\text{Từ đây ta suy ra 2 trường hợp:}\)

\(\text{Trường hợp 1:}\)

\(\text{Nếu }a+b+c+d\notin0\Rightarrow a=b=c=d\)

\(\Rightarrow M=1+1+1+1=1.4=4\)

\(\text{Trường hợp 2:}\)

\(\text{Nếu }a+b+c+d=0\text{ thì:}\)

\(a+b=-\left(c+d\right);b+c=-\left(d+a\right)\)

\(c+d=-\left(a+b\right);d+a=-\left(b+c\right)\)

\(\text{Do đó }M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Bình luận (0)

Các câu hỏi tương tự
NP
Xem chi tiết
HH
Xem chi tiết
TM
Xem chi tiết
HS
Xem chi tiết
LT
Xem chi tiết
DL
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
GT
Xem chi tiết