Tìm A biết rằng : A = \(\dfrac{a}{b+c}=\dfrac{c}{a+b}=\dfrac{b}{c+a}\)
Tìm A biết rằng: A = \(\dfrac{a}{b+c}=\dfrac{c}{a+b}=\dfrac{b}{c+a}\)
Áp dụng tc dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b+c}=\dfrac{c}{a+b}=\dfrac{b}{c+a}=\dfrac{a+b+c}{b+c+a+b+c+a}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
Vậy `A=1/2`
\(A=\dfrac{a}{b+c}=\dfrac{c}{a+b}=\dfrac{b}{c+a}=\dfrac{a+b+c}{b+c+a+b+c+a}=\dfrac{1}{2}\)
Vậy \(A=\dfrac{1}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
A = a/(b + c) = c/(a + b) = b/(c + a)
= (a + c + b)/(b + c + a + b + c + a)
= (a + b + c)/[2(a + b + c)]
= 1/2
Vậy A = 1/2
Tìm các số a,b,c biết rằng
\(\dfrac{a}{2}\) = \(\dfrac{b}{3}\) ; \(\dfrac{b}{4}\)= \(\dfrac{c}{5}\)và a-b-c = 28
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{a-b-c}{8-12-15}=\dfrac{28}{-19}=\dfrac{-28}{19}\)
Do đó: \(\left\{{}\begin{matrix}a=\dfrac{-224}{19}\\b=\dfrac{-336}{19}\\c=\dfrac{-420}{19}\end{matrix}\right.\)
a,Tìm x,y,z biết: \(\dfrac{y+z+1}{x}\)=\(\dfrac{x+z+2}{y}\)=\(\dfrac{x+y-3}{z}\)=\(\dfrac{1}{x+y+z}\)
b,Cho \(\dfrac{a}{b}\)=\(\dfrac{b}{c}\)=\(\dfrac{c}{d}\). Chứng minh rằng: (\(\dfrac{a+b+c}{b+c+d}\))3=\(\dfrac{a}{d}\)
c,Cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). Chứng minh rằng: \(\dfrac{5a+3b}{5c+3d}\)=\(\dfrac{5a-3b}{5c-3d}\)
d,Cho \(\dfrac{3x-2y}{4}\)=\(\dfrac{2z-4x}{3}\)=\(\dfrac{4y-3z}{2}\).Chứng minh rằng: \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{4}\)
b/ \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
\(\Rightarrow\left(\dfrac{a}{b}\right)^3=\dfrac{a}{d}\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
=> \(\left(\dfrac{a}{b}\right)^3=\left(\dfrac{a+b+c}{c+d+b}\right)^3\) (2)Từ (1) và (2)=>đpcm
1.tìm số xyz biết \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25},vàx-y+z=4\)
2. biết \(a^2+ab+\dfrac{b^2}{3}=25;c^2+\dfrac{b^2}{3}=9;a^2+ac+c^2=16\) và a≠ 0; c ≠ 0; a ≠ -0. c/m rằng \(\dfrac{2c}{a}=\dfrac{b+c}{a+c}\)
Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)
Aps dụng tính chất dãy tỉ số bằn nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
=>\(\dfrac{x}{2}=1=>x=2\)
\(\dfrac{y}{3}=1=>y=3\)
\(\dfrac{z}{5}=1=>z=5\)
Vậy x=2, y=3, z=5
Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
\(\Leftrightarrow x=2;y=3;z=5\)
Tìm các số a,b,c biết rằng : \(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\) và a+2b-3c = -20
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+2b-3c}{2+2\cdot3-3\cdot4}=\dfrac{-20}{-4}=5\\ \Rightarrow\left\{{}\begin{matrix}a=10\\b=15\\c=20\end{matrix}\right.\)
Tìm các số a , b , c , biết rằng \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\) và a + 2b - 3c = - 20
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=5\\\dfrac{b}{3}=5\\\dfrac{c}{4}=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=10\\b=15\\c=20\end{matrix}\right.\)
tìm các số a,b,c biết rằng \(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(^{\dfrac{c}{4}}\) và a+2b-3c= -20
`a/2 = b/3 = c/4`
`=> a/2 = (2b)/6 = (3c)/12`
mà `a+2b-3c=-20`
áp dụng tính chất dãy tỉ số bằng nhau ta có
` a/2 = (2b)/6 = (3c)/12 = (a+2b-3c)/(2+6-12)=(-20)/-4 = 5`
` => a=5xx2=10`
`b=5xx3=15`
`c=5xx4=20`
ta có : `a/2=b/3=c/4 =>a/2=(2b)/6=(3c)/12` và `a+2b-3c=-20`
ADTC dãy tỉ số bằng nhau ta có :
`a/2=(2b)/6=(3c)/6=(a+2b-3c)/(2+6-12)=(-20)/-4=5`
`=>a/2=5=>a=5.2=10`
`=>b/3=5=>b=5.3=15`
`=>c/4=5=>c=5.4=20`
#\(N\)
`a/2 = b/3 = c/4 , a+2b-3c = -20`
`-> a/2 =`\(\dfrac{2b}{6}=\dfrac{3c}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)
`-> a/2 = 5 , b/3 = 5 , c/4 = 5`
`-> a=2.5 = 10 , b=3.5=15 , c=4.5=20`
Tính giá trị của biểu thức sau , biết rằng: a+b+c=0 \(A=\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right).\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\)
Tìm các số a,b,c biết rằng:
\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\) và a\(^2\) - b\(^2\) + 2c\(^2\) =108
tham khảo!!
https://lazi.vn/edu/exercise/tim-cac-so-a-b-c-biet-rang-a-2-b-3-c-4-va-a-2-b-2-2c-2-108
Chứng minh rằng \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\) biết \(\dfrac{a}{b}=\dfrac{c}{d}\)
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
=>\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=>\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\left(đpcm\right)\)