Những câu hỏi liên quan
LH
Xem chi tiết
TH
11 tháng 4 2021 lúc 19:34

Do 2 + 1 chia hết cho 3 nên theo bổ đề LTE ta có \(v_3\left(2^{3^n}+1\right)=v_3\left(2+1\right)+v_3\left(3^n\right)=n+1\).

Do đó \(2^{3^n}+1⋮3^{n+1}\) nhưng không chia hết cho \(3^{n+2}\).

Bình luận (0)
KA
Xem chi tiết
NT
16 tháng 8 2017 lúc 22:33

vd:n=-0,8 thì sai

Bình luận (0)
AN
17 tháng 8 2017 lúc 9:17

Chứng minh 

\(\sqrt[3]{\left(n+1\right)^2}-\sqrt[3]{n^2}< \frac{2}{3\sqrt[3]{n}}\)

\(\Leftrightarrow3\sqrt[3]{n\left(n+1\right)^2}< 2+3n\)

Lập phương 2 vế rồi rút gọn được

\(\Leftrightarrow9n+8>0\)

Đúng với mọi n dương. Ta có ĐPCM.

Cái còn lại tương tự

Bình luận (0)
KG
Xem chi tiết
NT
25 tháng 7 2023 lúc 8:51

\(Q=n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9\)

\(Q=n^3+n^3+3n^2+3n+1+n^3+6n^2+12n+8\)

\(Q=3n^3+9n^2+15n+9\)

\(Q=3n\left(n^2+5\right)+9\left(n^2+1\right)\)

mà \(\left\{{}\begin{matrix}9\left(n^2+1\right)⋮9\\3n⋮3\\n^2+5⋮3\end{matrix}\right.\left(\forall n\inℕ^∗\right)\)

\(\Rightarrow Q=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9,\forall n\inℕ^∗\)

\(\Rightarrow dpcm\)

Bình luận (0)
LV
Xem chi tiết
DD
Xem chi tiết
NQ
Xem chi tiết
NC
6 tháng 3 2021 lúc 20:29

\(\Rightarrow A=2^{2n}-1=4^n-1=\left(4-1\right)\left(4^{n-1}+4^{n-2}+...+4+1\right)=3\cdot\left(4^{n-1}+4^{n-2}+...+4+1\right)⋮3\forall n\in N\)

Bình luận (0)
LD
Xem chi tiết
AM
1 tháng 7 2015 lúc 8:02

Ta thấy:

\(\sqrt{1^3}=1\)

\(\sqrt{1^3+2^3}=\sqrt{9}=3=1+2\)

\(\sqrt{1^3+2^3+3^3}=\sqrt{36}=6=1+2+3\)

..........................................

=>\(\sqrt{1^3+2^3+...+n^3}=1+2+...+n\Rightarrow1^3+2^3+...+n^3=\left(1+2+...+n\right)^2\)

Bình luận (0)
LH
Xem chi tiết
TT
Xem chi tiết