cho \(x+\sqrt{3}=2\)
tinh B = x5-3x4-3x3+6x2-20x+2018
Cho x + 3 = 2. Tính giá trị của biểu thức H = x5 – 3x4 + 6x2 – 20x + 2024
A. H = 2019
B. H = 2018
C. H = 2020
D. H = 2023
cho p(x) =3x5-5x2+x4-2x-x5+3x4-x2+x+1
q(x)=-5-3x5-2x+3x2-x5+2x-3x3-3x4
a,thu gọn và sắp sếp đa thức theo lũy thừa giảm dần của biến
b,p(x)+q(x)
`@`\(P\left(x\right)=3x^5-5x^2+x^4-2x-x^5+3x^4-x^2+x+1\)
\(P\left(x\right)=\left(3x^5-x^5\right)+x^4+\left(-5x^2-x^2\right)+\left(-2x+x\right)+1\)
\(P\left(x\right)=2x^5+x^4-6x^2-x+1\)
`@`\(Q\left(x\right)=-5-3x^5-2x+3x^2-x^5+2x-3x^3-3x^4\)
\(Q\left(x\right)=\left(-3x^5-x^5\right)-3x^4-3x^3+3x^2+\left(2x-2x\right)-5\)
\(Q\left(x\right)=-4x^5-3x^4-3x^3+3x^2-5\)
`@`\(P\left(x\right)+Q\left(x\right)=\left(2x^5+x^4-6x^2-x+1\right)+\left(-4x^5-3x^4-3x^3+3x^2-5\right)\)
\(=-2x^5-2x^4-3x^3-3x^2-x-4\)
cho hai đa thức :A=x5 -3x3+x2-x3-3+2x;B=x4-3x-2+5x2-3x4+2x5 a)sắp xếp đa thức A và B theo luỹ thừa của biến b) tính A+B, A-
a. \(A=x^5-3x^3+x^2-x^3-3+2x=x^5-4x^3+x^2+2x-3\)
\(B=x^4-3x-2+5x^2-3x^4+2x^5=2x^5-2x^4+5x^2-3x-2\)
b. \(A+B=x^5-4x^3+x^2+2x-3+2x^5-2x^4+5x^2-3x-2\)
\(=3x^5-2x^4-4x^3+6x^2-x-5\)
CHO 2 ĐA THỨC : A(x)= x5 - 2x4 + 5x -3 và B(x)= -x5 + 3x3 + 5x + 11 a, Tính A(2) và B(-1) b, Tính tổng A(x) + B(x) và hiệu A(x) - B(x) giúp mền với
a: \(A\left(2\right)=2^5-2\cdot2^4+5\cdot2-3=32-32+10-3=7\)
\(B\left(-1\right)=-\left(-1\right)^5+3\cdot\left(-1\right)^3+5\cdot\left(-1\right)+11=1-3-5+11=4\)
b: Ta có: A(x)+B(x)
\(=x^5-2x^4+5x-3-x^5+3x^3+5x+11\)
\(=-2x^4+3x^3+10x+8\)
Ta có: A(x)-B(x)
\(=x^5-2x^4+5x-3+x^5-3x^3-5x-11\)
\(=2x^5-2x^4-3x^3-14\)
Câu 1:Thu gọn và tìm bậc của đa thức
A= 2 + 5x2 - 3x3 + 4x2 - 2x - x2 + 6x5
B= 3x5y3 - 4x4y3 + 2x4y3 + 7xy2 - 3x5y3
Câu 2: Thu gọn và sắp xếp theo lũy thừa giảm dần
a) 8x5 - 6x2 + 7x - 3x5 + 2x2 + 15
b) -9 + 5x7 - 6x2 - 11x7 + 7x2 + x5
Câu 1:
A=2+5x²−3x³+4x²−2x−x²+6x5A=2+5x²-3x³+4x²-2x-x²+6x5
A=6x5−3x³+(5x2+4x2−x2)−2x+2A=6x5-3x³+(5x2+4x2-x2)-2x+2
A=6x5−3x3+8x2−2x+2
Bậc của đa thức là bậc 5
...............
B=3x5y3−4x4y3+2x4y3+7xy²−3x5y3
B=(3x5y3−3x5y3)+(−4x4y3+2x4y3)+7xy
B=−2x4y3+7xy2
Bậc của đa thức là bậc 7
................
Câu 2:
a)8x5−6x2+7x−3x5+2x2+
=(8x5−3x5)+(−6x2+2x2)+7x+15
=5x5−4x2+7x+15
..................
b)=-9+5x7-6x2-11x7+7x2+x5
=(5x7-11x7)+x5+(-6x2+7x2)-9
=−6x7+x5+x2−9
A(x)=x5+3x3-x5+x-1
B(x)=3x3-2x2-1
a tìm bậc A(1) B(2)
b tính A(x)+B(x)
\(A\left(x\right)=x^5+3x^3-x^5+x-1=3x^3+x-1\)
Bậc : 4
\(B\left(x\right)=3x^3-2x^2-1\)
Bậc : 5
\(A\left(x\right)+B\left(x\right)=3x^3+x-1+3x^3-2x^2-1\)
\(=6x^3-2x^2+x-2\)
Trong các khai triển dưới đây, khai triển nào là đúng?
A. (x-2)3 = x3 - 6x2 +12x-8
B. (x-2)3 = x3 - 2x2 + 4x -8
C. (x-2)3 = 3x3 - 6x2 + 12x -24
D. (x-2)3 = x3 - 6x2 + 12x + 8
A. (x-2)3 = x3 - 6x2 +12x - 8 (hằng đẳng thức)
Cho \(x=2-\sqrt{3}\). Tính giá trị biểu thức: \(B=x^5-3x^4-3x^3+6x^2-20x+2018\).
Ta có: \(x=2-\sqrt{3}\)\(\Rightarrow2-x=\sqrt{3}\)\(\Rightarrow\left(2-x\right)^2=3\)\(\Rightarrow4-4x+x^2=3\)\(\Rightarrow x^2-4x+1=0\)
Lại có: \(B=x^5-3x^4-3x^3+6x^2-20x+2018\)
\(\Rightarrow B=x^5-4x^4+x^4+x^3-4x^3+5x^2+x^2+20x+5+2013\)
\(\Rightarrow B=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2013\)
\(\Rightarrow B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2013\)
\(\Rightarrow B=x^3\cdot0+x^2\cdot0+5\cdot0+2013=2013\)
cho x+\(\sqrt{3}\) =2. Tính giá trị biểu thức B=x5-3x4-3x3+6x2-20x+2018
\(x+\sqrt{3}=2\Rightarrow\sqrt{3}=2-x\Rightarrow3=\left(2-x\right)^2\Rightarrow x^2-4x+1=0\)
Ta có:
\(B=x^5-4x^4+x^4-4x^3+x^3+5x^2+x^2-20x+5+2013\)
\(\Rightarrow B=x^5-4x^4+x^3+x^4-4x^3+x^2+5x^2-20x+5+2013\)
\(\Rightarrow B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2013\)
\(\Rightarrow B=x^3.0+x^2.0+5.0+2013=2013\)