Giải BPT :
\(x+\sqrt{50-x^2}+x\sqrt{50-x^2}=15\)
giải phương trình \(x+\sqrt{50-x^2}+x\sqrt{50-x^2}=15\)15
giải phương trình:\(x+\sqrt{50-x^2}+x.\sqrt{50-x^2}=15\)
\(x+\sqrt{50-x^2}+x\sqrt{50-x^2}=15\)
Bài 1: giải phương trình
a,\(3\sqrt{x-2}+\sqrt{25x-50}=2^5\)
Bài 2: tìm giá trị của x và biểu diễn trên trục số thực
a,\(x^2-5x+4< 0\) (đưa về BPT tích A.B <0=>xét A,B trái dấu)
b,\(\dfrac{x-3}{x+1}< 1\) (đưa về dạng \(\dfrac{A}{B}\) <0.Xét \(\left\{{}\begin{matrix}A,B\\B\ne0\end{matrix}\right.\)(a,b trái dấu)
Bài 3: Để đi đoạn đường từ A đến B, một xe máy đã đi hết 3h20 phút, còn một ôtô chỉ đi 2h30 phút. Tính chiều dài quãng đường AB biết rằng vận tốc của ôtô lớn hơn vận tốc xe máy 20km/h.(bài này chỉ cần viết phương trình và giải phương trình)
AI LÀM ĐƯỢC CÁI NÀO THÌ LÀM,MK CẦN GẤP BÂY H,LÀM TỪ 3 CÂU TRỞ LÊN
Bài 2 :
a, Ta có : \(x^2-5x+4< 0\)
\(\Leftrightarrow x^2-x-4x+4< 0\)
\(\Leftrightarrow x\left(x-1\right)-4\left(x-1\right)< 0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)< 0\)
Vậy ...
b, Ta có : \(\dfrac{x-3}{x+1}< 1\)
\(\Leftrightarrow\dfrac{x-3}{x+1}-\dfrac{x+1}{x+1}< 0\)
\(\Leftrightarrow\dfrac{x-3-x-1}{x+1}=\dfrac{-4}{x+1}< 0\)
Thấy - 4 < 0
Nên để \(-\dfrac{4}{x+1}< 0\) <=> x + 1 > 0 ( TH A, B trái dấu )
Vậy ...
Bài 1:
a) ĐKXĐ: \(x\ge2\)
Ta có: \(3\sqrt{x-2}+\sqrt{25x-50}=2^5\)
\(\Leftrightarrow3\sqrt{x-2}+5\sqrt{x-2}=32\)
\(\Leftrightarrow8\sqrt{x-2}=32\)
\(\Leftrightarrow\sqrt{x-2}=4\)
\(\Leftrightarrow x-2=16\)
hay x=18(thỏa ĐK)
Vậy: S={18}
Giải bpt sau : $\sqrt{x^{2}-1}$ + $\sqrt{x^{2}-x}$ $\leq$ $\sqrt{x^{2}+x-2}$
ĐK: \(x\ge1;x\le-2\)
\(\sqrt{x^2-1}+\sqrt{x^2-x}\le\sqrt{x^2+x-2}\)
\(\Leftrightarrow2x^2-x-1+2\sqrt{\left(x^2-1\right)\left(x^2-x\right)}\le x^2+x-2\)
\(\Leftrightarrow x^2-2x+1+2\sqrt{\left(x^2-1\right)\left(x^2-x\right)}\le0\)
\(\Leftrightarrow\left(x-1\right)^2+2\sqrt{\left(x^2-1\right)\left(x^2-x\right)}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\left(x^2-1\right)\left(x^2-x\right)=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\left(tm\right)\)
Vậy bất phương trình có nghiệm \(x=1\)
Giải phương trình: A= \(\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)\left(\sqrt{x+\sqrt{x^2-50}}\right)\)
Ta có \(A^2=\left(x-\sqrt{50}+x-\sqrt{50}-2.\sqrt{x^2-50}\right).\left(x+\sqrt{x^2-50}\right)\)
\(=\left(2x-2.\sqrt{x^2-50}\right).\left(x+\sqrt{x^2-50}\right)\)
\(=2.\left(x-\sqrt{x^2-50}\right).\left(x+\sqrt{x^2-50}\right)\)
\(=2.\left(x^2-x^2+50\right)\)
\(=100\)
Ta có \(\sqrt{x-\sqrt{50}}< \sqrt{x+\sqrt{50}}\)
\(\Rightarrow\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}< 0\)
mà \(\sqrt{x+\sqrt{x^2-50}}\ge0\)
Nên \(A\le0\)
Có \(A^2=100\)
Nên A=-10
\(\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)\sqrt{x+\sqrt{x^2-50}}\)
\(=\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right).\frac{1}{\sqrt{2}}.\sqrt{2x+2\sqrt{x-\sqrt{50}}.\sqrt{x+\sqrt{50}}}\)
\(=\frac{1}{\sqrt{2}}.\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)\sqrt{\left(\sqrt{x-\sqrt{50}}+\sqrt{x+\sqrt{50}}\right)^2}\)
\(=\frac{1}{\sqrt{2}}.\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)\left(\sqrt{x-\sqrt{50}}+\sqrt{x+\sqrt{50}}\right)\)
\(=\frac{1}{\sqrt{2}}.\left(x-\sqrt{50}-x-\sqrt{50}\right)=\frac{-2\sqrt{50}}{\sqrt{2}}=-10\)
Giải phương trình:
a. \(3\sqrt{8x}-\sqrt{32x}+\sqrt{50x}=21\)
b. \(\sqrt{25x+50}+3\sqrt{4x+8}-2\sqrt{16x+32}=15\)
c. \(\sqrt{\left(x-2\right)^2}=12\)
d. \(\sqrt{x^2-6x+9}-3=5\)
e.\(\sqrt{\left(2x-1\right)^2}-x=3\)
f. \(\sqrt{3x-6}-x=-2\)
h. \(\sqrt{3-2x}-2=x\)
a.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 6\sqrt{2x}-4\sqrt{2x}+5\sqrt{2x}=21$
$\Leftrightarrow 7\sqrt{2x}=21$
$\Leftrightarrow \sqrt{2x}=3$
$\Leftrightarrow 2x=9$
$\Leftrightarrow x=\frac{9}{2}$ (tm)
b.
ĐKXĐ: $x\geq -2$
PT $\Leftrightarrow \sqrt{25(x+2)}+3\sqrt{4(x+2)}-2\sqrt{16(x+2)}=15$
$\Leftrightarrow 5\sqrt{x+2}+6\sqrt{x+2}-8\sqrt{x+2}=15$
$\Leftrightarrow 3\sqrt{x+2}=15$
$\Leftrightarrow \sqrt{x+2}=5$
$\Leftrightarrow x+2=25$
$\Leftrightarrow x=23$ (tm)
c.
$\sqrt{(x-2)^2}=12$
$\Leftrightarrow |x-2|=12$
$\Leftrightarrow x-2=12$ hoặc $x-2=-12$
$\Leftrightarrow x=14$ hoặc $x=-10$
e.
PT $\Leftrightarrow |2x-1|-x=3$
Nếu $x\geq \frac{1}{2}$ thì $2x-1-x=3$
$\Leftrightarrow x=4$ (tm)
Nếu $x< \frac{1}{2}$ thì $1-2x-x=3$
$\Leftrightarrow x=\frac{-2}{3}$ (tm)
f.
ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{3(x-2)}-(x-2)=0$
$\Leftrightarrow \sqrt{x-2}(\sqrt{3}-\sqrt{x-2})=0$
$\Leftrightarrow \sqrt{x-2}=0$ hoặc $\sqrt{3}-\sqrt{x-2}=0$
$\Leftrightarrow x=2$ hoặc $x=5$ (tm)
h. ĐKXĐ: $x\leq \frac{3}{2}$
PT $\Leftrightarrow \sqrt{3-2x}=x+2$
\(\Rightarrow \left\{\begin{matrix} x+2\geq 0\\ 3-2x=(x+2)^2=x^2+4x+4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ x^2+6x+1=0\end{matrix}\right.\)
\(\Leftrightarrow x=-3+2\sqrt{2}\) (tm)
Vậy.......
Giải BPT: \(\sqrt{x^4+x^2+1}+\sqrt{x.\left(x^2-x+1\right)}\le\sqrt{\dfrac{\left(x^2+1\right)^3}{x}}\)
Giải BPT: \(\sqrt{x^4+x^2+1}+\sqrt{x.\left(x^2-x+1\right)}\le\sqrt{\dfrac{\left(x^2+1\right)^3}{x}}\)