Bài 1 : Cho tam giác ABC, A(1;3) B(0;1) H ( 8/5 ; 9/5 ). Tìm tọa độ tâm đường trong ngoại tiếp tam giác ABC
Bài 2 : Cho hình vuông ABCD A(1;2) C(3;5). Xác định tọa độ các đỉnh còn lại của hình vuông.
Bài 1: Cho tam giác ABC cân tại A có các đường trung tuyến BE và CD . Chứng minh rằng BE bằng CD
Bài 2: Cho tam giác ABC có đường trung tuyến BE và CD, biết BE = CD . Chứng minh rằng tam giác ABC cân tại A
Bài 3: Cho tam giác ABC chứng minh rằng a) Nếu tam giác ABC vuông góc tại A , có trung tuyến AM =1/2 BC
b) Nếu trung tuyến AM =1/2 BC thì tam giác ABC vuông góc tại A
bài 2:cho tam giác ABC có A+B-2C=27 độ và A+3C=273 độ.So sánh các cạnh trong tam giác ABC
bài 3:cho tam giác ABC có C-3B-2A=-3 độ và 5B-2A=16 độ. Tính các góc từ đó so sánh các cạnh trong tam giác ABC
BÀI TẬP
Bài 1. Cho tam giác ABC có AB=5cm; AC=7cm. So sánh <B và <C
Bài 2. Cho tam giác ABC có AB=3cm; AC= 4cm;BC = 5cm. So sánh các góc của
tam giác
Bài 3.Cho tam giác có <B=60 0 ; <C =40 0 . So sánh các cạnh của tam giác ABC
Bài 4. Cho tam giác ABC vuông ở A có AB= 6cm; BC = 10 cm
1/ Tính AC
2/ So sánh các góc của tam giác ABC
Bài 1: Cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. Biết BD = 15cm; DC = 20cm. Tính AB, AC, AH,AD.
Bài 2: Cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. Biết AB=12cm; AC = 16cm. Tính HD,HB.HC.
Bài 3: Cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. Biết AB=24cm; AC = 32cm. Tính HD,HB,HC.
1:
BC=15+20=35cm
AD là phân gíac
=>AB/BD=AC/CD
=>AB/3=AC/4=k
=>AB=3k; AC=4k
AB^2+AC^2=BC^2
=>25k^2=35^2
=>k=7
=>AB=21cm; AC=28cm
AH=21*28/35=16,8cm
\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)
2:
BC=căn 12^2+16^2=20cm
HB=AB^2/BC=12^2/20=7,2cm
HC=20-7,2=12,8cm
Bài 1: Cho tam giác ABC vuông tại A, tanB=3\4, AB=4cm. Giải tam giác?
Bài 2 : Cho tam giác ABC cân tại A, góc BAC=42, AB=AC=7cm,
a Đường cao AH=?
b BC=?
c Đường cao CK=?
Bài 3: Cho tam giác ABC cân tại A, AB=AC=8,5cm, BC=8cm.
a Tính các góc của tam giác ABC?
b Diện tích của tam giác ABC=?
giải từng bước...
Bài 1: Cho tam giác ABC có AB = 2cm, BC= 4 cm, CA = 3 cm
Tính \(\overrightarrow{AB}.\overrightarrow{AC}\)
Bài 2: Cho tam giác ABC có A ( 1; -1), B ( 5,-3), C ( 2,0)
a) Chứng minh rằng : A,B,C là 3 đỉnh của tam giác
Tính chu vi và diện tích của tam giác
b) Tìm tọa độ M biết \(\overrightarrow{CM}=2\overrightarrow{AB}-3\overrightarrow{AC}\)
c) Tìm tâm bán kính đường tròn ngoại tiếp tam giác ABC
.Bài 1. cho tam giác Abc cân tại A. có AB = 5. BC = 8. tính diện tích tam giác ABC.
Bài 2. cho tam giác ABC, trung tuyến AM. E thuộc AB sao cho AE = 1/3 AB. Chứng minh :
a)diện tích tam giác AME = ½ diện tích tam giác BME
b) diện tích tam giác AME = 1/6 diện tích tam giáCABc
Bài 3. hình thang ABCD có AB // CD. AC giaomBD tại O. chứng minh diện tích tam giác AOD = diện tích tam giác BOC
Bài 4.cho tam giác ABC. D thuộc AB sao cho AD = 1/3 AB. E thuộc BC sao cho BE = 1/3 BC, F thuộc AC sao cho CF = 1/3 CA. Chứng minh
a)iện tích tam giác ADM = 1/3 diện tích tam giác ABN ( làm được rồi )
b)iện tích tam giác ABM = ½ diện tích tam giác ACM ( làm đc rồi )
c) diện tích tam giác AMD = 1/21 diện tích tam giác ABC
d) diện tích tam giác MNP = 1/7 diện tích tam giác ABC
.help meeee. toán 8 ạ
bài 1: Cho tam giác ABC cân có Â=36 độ. Trung trực AB cắt AC tại D. Chứng minh BD là phân giác tam giác ABC
bài 2: Cho tam giác ABC, Â=90 dộ,AB<AC. Đường trung trực của cạnh AB cắt AC ở M. Biết BM là phân giác góc ABC. Tính góc ACB
bài 3: Cho tam giác ABC cân A. Trung tuyến AM. Gọi I là điểm nằm giữa A và m. Chứng minh rằng tam giác AIB=tam giác AIC; tam giác IBM= tam giác ICM
Bài 1:
1.Cho tam giác ABC: Góc A= 70 độ, góc B= 50 độ. Hãy so sánh độ dài các cạnh của tam giác ABC.
2. Cho tam giác ABC có AB= 5cm, AC= 12cm, BC= 13cm. Tam giác ABC có dạng dặc biệt nào? Vì sao?
Bài 2:
Cho tam giác ABC cân tại A ( Góc A<90 độ); các đường cao BD; CE (D thuộc AC; E thuộc AB) cắt nhau tại H
a) Chứng minh tam giác ABD= tam giác ACE
b) Chứng minh tam giác BHC là tam giác cân
b2 :
a, xét tam giác ABD và tam giác ACE có: góc A chung
AB = AC do tam giác ABC cân tại A (gt)
góc ADB = góc AEC = 90
=> tam giác ABD = tam giác ACE (ch-cgv)
b, tam giác ABD = tam giác ACE (câu a)
=> góc ABD = góc ACE (đn)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
góc HBC = góc ABC - góc ABD
góc HCB = góc ACB - góc ACE
=> góc HBC = góc HCB
=> tam giác HBC cân tại H (Dh)
còn câu 1
Bài 1 :Cho tam giác ABC cân tại A, góc A= 20 độ. Trên cạnh AB lấy điểm D sao cho AD=BC. CMR:góc DCA= 1/2 góc A
Bài 2 :Cho tam giác ABC vuông cân tại A, góc C=15 độ. Trên tia BA lấy điểm O
sao cho BO=2AC.CMR : tam giác OBC cân.