§4. Hệ trục tọa độ

KT

Bài 1 : Cho tam giác ABC, A(1;3) B(0;1) H ( 8/5 ; 9/5 ). Tìm tọa độ tâm đường trong ngoại tiếp tam giác ABC
Bài 2 : Cho hình vuông ABCD A(1;2) C(3;5). Xác định tọa độ các đỉnh còn lại của hình vuông.

NT
9 tháng 11 2016 lúc 19:25

Bài 1: H là điểm nào?

 

 

Bình luận (0)
NT
9 tháng 11 2016 lúc 20:12

Bài 2:

A(1;2) B C(3;5) D

Gọi I là tâm hình vuông ABCD

Ta có: I là trung điểm của AC

\(\Rightarrow\begin{cases}x_I=\frac{x_A+x_C}{2}=\frac{4}{2}=2\\y_I=\frac{y_A+y_C}{2}=\frac{2+5}{2}=\frac{7}{2}\end{cases}\)

\(\Rightarrow I\left(2;\frac{7}{2}\right)\)

Gọi: \(B=\left(x;y\right)\)

\(\overrightarrow{AB}=\left(x-1;y-2\right)\)

\(\overrightarrow{IB}=\left(x-2;y-\frac{7}{2}\right)\)

\(\overrightarrow{CB}=\left(x-3;y-5\right)\)

\(\overrightarrow{AC}=\left(2;3\right)\)

Ta có: \(\begin{cases}AB\text{_|_}CB\\IB\text{_|_}AC\end{cases}\Leftrightarrow\begin{cases}\overrightarrow{AB}.\overrightarrow{CB}=0\\\overrightarrow{IB}.\overrightarrow{AC}=0\end{cases}\Leftrightarrow\begin{cases}\left(x-1\right)\left(x-3\right)+\left(y-2\right)\left(y-5\right)=0\\2\left(x-2\right)+3\left(y-\frac{7}{2}\right)=0\end{cases}\)

\(\Leftrightarrow\begin{cases}\left(\frac{25}{4}-\frac{3}{2}y\right)\left(\frac{17}{4}-\frac{3}{2}y\right)+\left(y-2\right)\left(y-5\right)=0\left(1\right)\\x=\frac{29}{4}-\frac{3}{2}y\left(2\right)\end{cases}\)

\(\left(1\right)\Leftrightarrow\frac{13}{4}y^2-\frac{91}{4}y+\frac{585}{16}=0\)

\(\Leftrightarrow\) TH1: \(y=\frac{9}{2}\Rightarrow x=\frac{1}{2}\)

TH2: \(y=\frac{5}{2}\Rightarrow x=\frac{7}{2}\)

Vậy toạ độ hai đỉnh còn lại là \(\left(\frac{1}{2};\frac{9}{2}\right)\) và \(\left(\frac{7}{2};\frac{5}{2}\right)\)

Vì máy mình đánh ngoặc vuông không được nên ghi thành TH1;TH2. Chứ bạn dụng dấu ngoặc vuông cho đỡ nhé.

 

Bình luận (0)

Các câu hỏi tương tự
HL
Xem chi tiết
TT
Xem chi tiết
QH
Xem chi tiết
ND
Xem chi tiết
MC
Xem chi tiết
RR
Xem chi tiết
SK
Xem chi tiết
NS
Xem chi tiết
DT
Xem chi tiết