\(\sqrt{x+2}+\sqrt{x+7}+\sqrt{x^2+7x}=17-x^3\)
giải pt :
a,\(3\sqrt{x^2+4x-5}+\sqrt{x-3}=\sqrt{11x^2+25x+2}\)
b,\(\sqrt{5x^2+14x+9}-5\sqrt{x+1}=\sqrt{x^2-x-2}\)
c, \(x^2-8x+17=3\sqrt{x^3-7x+6}\)
1, \(K=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
2, \(\sqrt{x-3}-2.\sqrt{x^2-3x}=0\)
3, \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
4, \(x-5\sqrt{x}+4=0\)
1,\(K=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{x}}\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\right)\)\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\left|\sqrt{5}-1\right|+\sqrt{5}+1\right)\)\(=\dfrac{1}{\sqrt{2}}\left|\sqrt{5}-1+\sqrt{5}+1\right|=\dfrac{1}{\sqrt{2}}.2\sqrt{5}\)\(=\sqrt{10}\)
2, \(\sqrt{x-3}-2\sqrt{x^2-3x}=0\left(đk:x\ge3\right)\)
\(\Leftrightarrow\sqrt{x-3}\left(1-2\sqrt{x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\1-2\sqrt{x}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\left(ktm\right)\end{matrix}\right.\)
Vậy pt có nghiệm x=3
3, \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\left(đk:x>-\dfrac{5}{7}\right)\)
\(\Leftrightarrow9x-7=7x+5\)
\(\Leftrightarrow x=6\left(tm\right)\)
4, \(x-5\sqrt{x}+4=0\)(đk: \(x\ge0\))
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=16\end{matrix}\right.\) (tm)
Vậy...
1) Bạn tự làm
2) ĐK: \(x\ge3\)
PT \(\Leftrightarrow\sqrt{x-3}\left(1-2\sqrt{x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\2\sqrt{x}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{4}\left(loại\right)\end{matrix}\right.\)
Vậy ...
3) ĐK: \(x>-\dfrac{5}{7}\)
PT \(\Rightarrow9x-7=7x+5\) \(\Leftrightarrow x=6\)
Vậy ...
4) ĐK: \(x\ge0\)
PT \(\Leftrightarrow x-4\sqrt{x}-\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-4\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=4\\\sqrt{x}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=16\\x=1\end{matrix}\right.\)
Vậy ...
giải phương trình :
a,\(\sqrt{5x^2+14x+9}-5\sqrt{x+1}=\sqrt{x^2-x-2}\)
b, \(x^2-8x+17=3\sqrt{x^3-7x+6}\)
c, \(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)
tìm x, biết
\(\sqrt{2x+3}=3-\sqrt{5}\)
\(\sqrt{5+\sqrt{7x}}=2+\sqrt{7}\)
\(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)=4-x\)
\(\dfrac{1}{2}\sqrt{x+1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
Câu 1:
ĐK: \(x\geq \frac{-3}{2}\)
\(\sqrt{2x+3}=3-\sqrt{5}\)
\(\Rightarrow 2x+3=(3-\sqrt{5})^2=14-6\sqrt{5}\)
\(\Rightarrow x=\frac{11-6\sqrt{5}}{2}\)
Câu 2: ĐK: \(x\geq 0\)
\(\sqrt{5+\sqrt{7x}}=2+\sqrt{7}\)
\(\Rightarrow 5+\sqrt{7x}=(2+\sqrt{7})^2=11+4\sqrt{7}\)
\(\Rightarrow \sqrt{7x}=6+4\sqrt{7}\)
\(\Rightarrow 7x=(6+4\sqrt{7})^2\Rightarrow x=\frac{(6+4\sqrt{7})^2}{7}\)
Câu 3: ĐK: \(x\geq 0\)
\((\sqrt{x}-2)(5-\sqrt{x})=4-x\)
\(\Leftrightarrow 5\sqrt{x}-x-10+2\sqrt{x}=4-x\)
\(\Leftrightarrow 7\sqrt{x}=14\Rightarrow \sqrt{x}=2\Rightarrow x=4\)
Câu 4: ĐK: \(x\ge 1\)
Sửa đề \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)
\(\Leftrightarrow \frac{\sqrt{x-1}}{2}-\frac{3}{2}\sqrt{9}.\sqrt{x-1}+24\sqrt{\frac{1}{64}}\sqrt{x-1}=-17\)
\(\Leftrightarrow \frac{\sqrt{x-1}}{2}-\frac{9\sqrt{x-1}}{2}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow \sqrt{x-1}(\frac{1}{2}-\frac{9}{2}+3)=-17\)
\(\Leftrightarrow -\sqrt{x-1}=-17\Rightarrow \sqrt{x-1}=17\Rightarrow x=17^2+1=290\)
1)\(7\sqrt{3x-7}+\left(4x-7\right)\sqrt{7-x}=32\)
2)\(4x^2-11x+6=\left(x-1\right)\sqrt{2x^2-6x+6}\)
3)\(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
4)\(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
5)\(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
6)\(2\left(5x-3\right)\sqrt{x+1}+\left(x+1\right)\sqrt{3-x}=3\left(5x+1\right)\)
7)\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-14x\)
a) \(\left(x^2-5x+6\right)\left(\sqrt{x+5}+4\right)=3x^3-10x^2-7x+30\)
b) \(\sqrt{x^2+x+2}+\sqrt{x^2-x+2}=2x+1\)
c) \(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
a.
ĐKXĐ: \(x\ge-5\)
\(\Leftrightarrow\left(x^2-5x+6\right)\left(\sqrt{x+5}+4\right)=\left(3x+5\right)\left(x^2-5x+6\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+6=0\\\sqrt{x+5}+4=3x+5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\\sqrt{x+5}=3x+1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{3}\\x+5=9x^2+6x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{3}\\9x^2+5x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\left(loại\right)\\x=\dfrac{4}{9}\end{matrix}\right.\)
b. Bạn coi lại đề, pt này nghiệm rất xấu
c.
ĐKXĐ: \(1\le x\le7\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
Bài 3.Tìm x để \(\sqrt{ }\) có nghĩa
a)\(\sqrt{\dfrac{3}{x+7}}\)
b)\(\sqrt{\dfrac{-2}{5-x}}\)
c)\(\sqrt{x^2-7x+10}\)
d)\(\sqrt{x^2-8x+10}\)
e)\(\sqrt{9x^2+1}\)
Tìm x để căn có nghĩa ak mn giúp e với ak
\(a,ĐK:\dfrac{3}{x+7}\ge0\Leftrightarrow x+7>0\left(3>0;x+7\ne0\right)\Leftrightarrow x>-7\\ b,ĐK:\dfrac{-2}{5-x}\ge0\Leftrightarrow5-x< 0\left(2-< 0;5-x\ne0\right)\Leftrightarrow x>5\\ c,ĐK:x^2-7x+10\ge0\Leftrightarrow\left(x-5\right)\left(x-2\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-5\ge0\\x-2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-5\le0\\x-2\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge5\\x\le2\end{matrix}\right.\)
\(d,ĐK:x^2-8x+10\ge0\Leftrightarrow\left(x-4-\sqrt{6}\right)\left(x-4+\sqrt{6}\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-4-\sqrt{6}\ge0\\x-4+\sqrt{6}\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-4-\sqrt{6}\le0\\x-4+\sqrt{6}\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge4+\sqrt{6}\\x\ge4-\sqrt{6}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le4+\sqrt{6}\\x\le4-\sqrt{6}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4+\sqrt{6}\\x\le4-\sqrt{6}\end{matrix}\right.\)
\(e,ĐK:9x^2+1\ge0\Leftrightarrow x\in R\left(9x^2+1\ge1>0\right)\)
a) \(ĐK:x+7>0\Leftrightarrow x>-7\)
b) \(ĐK:5-x< 0\Leftrightarrow x>5\)
c) \(ĐK:x^2-7x+10\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x-5\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge5\\x\le2\end{matrix}\right.\)
d) \(ĐK:x^2-8x+10\ge0\)
\(\Leftrightarrow\left(x-4-\sqrt{6}\right)\left(x-4+\sqrt{6}\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge4+\sqrt{6}\\x\le4-\sqrt{6}\end{matrix}\right.\)
e) Do \(9x^2+1\ge1>0\)
Nên biểu thức được xác định với mọi x
Giải phương trình:
a) \(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\).
b) \(x^2-4x=\sqrt{x+2}\), với \(x\ge2\).
c) \(x^2-7x+2\left(x-2\right)\sqrt{x+1}+1=0\).
a:
ĐKXĐ: x>=5/2
\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
=>\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\cdot\sqrt{2x-5}}=14\)
=>\(\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)
=>\(\sqrt{2x-5}+1+\sqrt{2x-5}+3=14\)
=>\(2\sqrt{2x-5}+4=14\)
=>\(\sqrt{2x-5}=5\)
=>2x-5=25
=>2x=30
=>x=15
b: \(x^2-4x=\sqrt{x+2}\)
=>\(x+2=\left(x^2-4x\right)^2\) và x^2-4x>=0
=>x^4-8x^3+16x^2-x-2=0 và x^2-4x>=0
=>(x^2-5x+2)(x^2-3x-1)=0 và x^2-4x>=0
=>\(\left[{}\begin{matrix}x=\dfrac{5+\sqrt{17}}{2}\\x=\dfrac{3-\sqrt{13}}{2}\end{matrix}\right.\)
Giải pt:
a) x=\(\sqrt{1-\dfrac{1}{x}}+\sqrt{x-\dfrac{1}{x}}\)
b) \(\sqrt{x^2+x}+\sqrt{x-x^2}=x+1\)
c) \(\sqrt{x^2-x}+\sqrt{x^2+2x}=2\sqrt{x^2}\)
d)\(\sqrt{\dfrac{x^3+1}{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)
e) \(\sqrt{\sqrt{3}-x}=x\sqrt{\sqrt{3}+x}\)
f) \(4x\sqrt{x+7}+3x\sqrt{7x-3}=6x^2+2\sqrt{7x^2+46x-21}\)
a) ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\0>x\ge-1\end{matrix}\right.\). Để pt có nghiệm => x>0=> \(x\ge1\) pt<=> \(x-\sqrt{1-\dfrac{1}{x}}=\sqrt{x-\dfrac{1}{x}}.Bìnhphương2vetaco\left(x-\sqrt{1-\dfrac{1}{x}}\right)^2=x-\dfrac{1}{x}\)\(\Leftrightarrow x^2+1-\dfrac{1}{x}-2x\sqrt{1-\dfrac{1}{x}}=x-\dfrac{1}{x}\Leftrightarrow x^2-x+1=2\sqrt{x^2-x}\Leftrightarrow\left(\sqrt{x^2-x}-1\right)^2=0\Leftrightarrow x^2-x=1\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)
b) ĐKXĐ\(0\le x\le1\) pt \(\Leftrightarrow\left(\sqrt{x^2+x}+\sqrt{x-x^2}\right)^2=\left(x+1\right)^2\Leftrightarrow2x+2x.\sqrt{1-x^2}=x^2+2x+1\Leftrightarrow x^2-2x\sqrt{1-x^2}+1-x^2+x^2=0\Leftrightarrow\left(x-\sqrt{1-x^2}\right)^2+x^2=0\)
c)ĐKXĐ:x=0 hoặc \(x\ge1;x\le-2\)
Nếu x=0=> VT=VP=0=> x=0 là 1 no
Nếu \(x\ge1.\)pt<=>\(\sqrt{x-1}+\sqrt{x+2}=2\sqrt{x}\Leftrightarrow x-1+x+2+2\sqrt{x^2+x-2}=4x\Leftrightarrow2x-1=2\sqrt{x^2+x-2}\Leftrightarrow4x^2-4x+1=4\left(x^2+x-2\right)\left(Dox\ge1\right)\)\(\Leftrightarrow8x=9\)=>....
Nếu \(x\le-2.\)Chia cả 2 vế của pt cho \(\sqrt{-x}\).Giải tương tự x>=1