6sinx-2cos^3x=5sin2xcosx
Giải phương trình sau:
a) 3sin^3x + 2sin^2x.cosx = sinx.cos^2x
b) 6sinx + 2cos^3x = 5sin2x.cosx
a/
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)
\(3tan^3x+2tan^2x=tanx\)
\(\Leftrightarrow tanx\left(3tan^2x+2tanx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=0\\3tan^2x+2tanx-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=0\\tanx=-1\\tanx=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=-\frac{\pi}{4}+k\pi\\x=arctan\left(\frac{1}{3}\right)+k\pi\end{matrix}\right.\)
b/ \(\Leftrightarrow3sinx+cos^3x=5sinx.cos^2x\)
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)
\(3tanx.\frac{1}{cos^2x}+1=5tanx\)
\(\Leftrightarrow3tanx\left(1+tan^2x\right)-5tanx+1=0\)
\(\Leftrightarrow3tan^3x-2tanx+1=0\)
\(\Leftrightarrow\left(tanx+1\right)\left(3tan^2x-3tanx+1\right)=0\)
\(\Leftrightarrow tanx=-1\Rightarrow x=-\frac{\pi}{4}+k\pi\)
giải phương trình:
1) \(2\sqrt{2}cos^3x\left(x-\frac{\pi}{4}\right)-3cosx-sinx=0\)
2) \(tanx.sin^2x-2sin^2x=3\left(cos2x+sinxcosx\right)\)
3) \(2sin^3x=cosx\)
4) \(6sinx-2cos^3x=\frac{5sin4xcosx}{2cos2x}\)
giải các pt
a) \(\left(1+tanx\right)sin^2x=3sinx\left(cosx-sinx\right)+3\)
b) \(6sinx-2cos^3x=\frac{5sin4x.sinx}{2cos2x}\)
c) \(cos^3x=2sinx.sin\left(\frac{\pi}{3}-x\right).sin\left(x+\frac{\pi}{3}\right)\)
d) \(cos2x\left(sinx+cosx\right)-4cos^3x\left(1+sin2x\right)=0\)
a.
ĐKXĐ: \(cosx\ne0\)
Chia 2 vế cho \(cos^2x\) ta được:
\(\left(1+tanx\right).tan^2x=3tanx\left(1-tanx\right)+\frac{3}{cos^2x}\)
\(\Leftrightarrow tan^2x\left(tanx+1\right)=3tanx-3tan^2x+3+3tan^2x\)
\(\Leftrightarrow tan^2x\left(tanx+1\right)-3\left(tanx+1\right)=0\)
\(\Leftrightarrow\left(tan^2x-3\right)\left(tanx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\sqrt{3}\\tanx=-\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow cos^3x=sinx\left(cos\frac{2\pi}{3}+cos2x\right)\)
\(\Leftrightarrow cos^3x=sinx\left(cos2x-\frac{1}{2}\right)\)
\(\Leftrightarrow cos^3x=2sinx\left(1-2sin^2x-\frac{1}{2}\right)\)
\(\Leftrightarrow cos^3x=sinx\left(\frac{1}{2}-2sin^2x\right)\)
\(\Leftrightarrow2cos^3x=sinx-4sin^3x\)
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)
\(\Leftrightarrow2=tanx\left(1+tan^2x\right)-4tan^3x\)
\(\Leftrightarrow3tan^3x-tanx+2=0\)
\(\Leftrightarrow\left(tanx+1\right)\left(3tan^2x-3tanx+2\right)=0\)
\(\Leftrightarrow tanx=-1\Rightarrow x=-\frac{\pi}{4}+k\pi\)
d/
\(\Leftrightarrow\left(cos^2x-sin^2x\right)\left(sinx+cosx\right)-4cos^3x\left(sin^2x+cos^2x+2sinx.cosx\right)=0\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(sinx+cosx\right)^2-4cos^3x\left(sinx+cosx\right)^2=0\)
\(\Leftrightarrow\left(cosx-sinx-4cos^3x\right)\left(sinx+cosx\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx-4cos^3x=0\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=0\Leftrightarrow x+\frac{\pi}{4}=k\pi\)
\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)
Xét \(\left(2\right)\), nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)
\(\Leftrightarrow\frac{1}{cos^2x}-tanx.\frac{1}{cos^2x}-4=0\)
\(\Leftrightarrow1+tan^2x-tanx\left(1+tan^2x\right)-4=0\)
\(\Leftrightarrow-tan^3x+tan^2x-tanx-3=0\)
\(\Leftrightarrow\left(tanx+1\right)\left(tan^2x-2tanx+3\right)=0\)
\(\Leftrightarrow tanx=-1\Rightarrow x=-\frac{\pi}{4}+k\pi\)
Hình bên là đồ thị của hàm số y = x 3 - 3 x . Sử dụng đồ thị đã cho, tìm tất cả các giá trị thực của tham số m để bất phương trình 8 sin x 3 - 6 sin x ≤ m nghiệm đúng với mọi xÎR.
A. m ≥ 2
B. 0 ≤ m ≤ 2
C. - 2 ≤ m ≤ 2
D. m ≥ - 2
Tính giá trị của biểu thức:
a) S = 1/(1*3*5) + 1/(3*5*7) + ... + 1/(2011*2013*2015)
b) Tính T= (2tanx-3cotx)/(4tanx+5cotx) + 6sinx^2 - 7cos^3x biết cosx= 3/4
Hình bên là đồ thị của hàm số y = x 3 - 3 x Sử dụng đồ thị đã cho, tìm tát cả các giá trị thực của tham số m để bất phương trình 8 sin 3 - 6 sin x ≤ m nghiệm đúng với mọi x thuộc R
A.
B.
C.
D.
Đáp án A
Đặt
Yều cẩu bào toán trở thành: Tìm m để bất phương trình nghiệm đúng với mọi
Từ đồ thị đã cho, ta suy ra đồ thị của hàm số
Từ đó ta có kết quả thỏa mãn yêu cầu bài toán là
Giải pt cos6x + sin3x +6cos2x -6sinx =0
√3 sin 2x .(2cos x +1)+2= cos 3x + cos 2x -3cos x
tìm giá trị biểu thức \(B=sinx+5cosx/sin^3x-2cos^3x\) biết tanx=2