Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

LL

Giải phương trình sau:

a) 3sin^3x + 2sin^2x.cosx = sinx.cos^2x

b) 6sinx + 2cos^3x = 5sin2x.cosx

NL
18 tháng 8 2020 lúc 20:32

a/

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(3tan^3x+2tan^2x=tanx\)

\(\Leftrightarrow tanx\left(3tan^2x+2tanx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=0\\3tan^2x+2tanx-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=0\\tanx=-1\\tanx=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=-\frac{\pi}{4}+k\pi\\x=arctan\left(\frac{1}{3}\right)+k\pi\end{matrix}\right.\)

b/ \(\Leftrightarrow3sinx+cos^3x=5sinx.cos^2x\)

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(3tanx.\frac{1}{cos^2x}+1=5tanx\)

\(\Leftrightarrow3tanx\left(1+tan^2x\right)-5tanx+1=0\)

\(\Leftrightarrow3tan^3x-2tanx+1=0\)

\(\Leftrightarrow\left(tanx+1\right)\left(3tan^2x-3tanx+1\right)=0\)

\(\Leftrightarrow tanx=-1\Rightarrow x=-\frac{\pi}{4}+k\pi\)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
JE
Xem chi tiết
DT
Xem chi tiết
NL
Xem chi tiết
NC
Xem chi tiết
LH
Xem chi tiết