Bài 4: Ôn tập chương Hàm số lượng giác và phương trình lượng giác

JE

giải các pt

a) \(\left(1+tanx\right)sin^2x=3sinx\left(cosx-sinx\right)+3\)

b) \(6sinx-2cos^3x=\frac{5sin4x.sinx}{2cos2x}\)

c) \(cos^3x=2sinx.sin\left(\frac{\pi}{3}-x\right).sin\left(x+\frac{\pi}{3}\right)\)

d) \(cos2x\left(sinx+cosx\right)-4cos^3x\left(1+sin2x\right)=0\)

NL
18 tháng 8 2020 lúc 10:52

a.

ĐKXĐ: \(cosx\ne0\)

Chia 2 vế cho \(cos^2x\) ta được:

\(\left(1+tanx\right).tan^2x=3tanx\left(1-tanx\right)+\frac{3}{cos^2x}\)

\(\Leftrightarrow tan^2x\left(tanx+1\right)=3tanx-3tan^2x+3+3tan^2x\)

\(\Leftrightarrow tan^2x\left(tanx+1\right)-3\left(tanx+1\right)=0\)

\(\Leftrightarrow\left(tan^2x-3\right)\left(tanx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\sqrt{3}\\tanx=-\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

Bình luận (0)
NL
18 tháng 8 2020 lúc 11:04

c/

\(\Leftrightarrow cos^3x=sinx\left(cos\frac{2\pi}{3}+cos2x\right)\)

\(\Leftrightarrow cos^3x=sinx\left(cos2x-\frac{1}{2}\right)\)

\(\Leftrightarrow cos^3x=2sinx\left(1-2sin^2x-\frac{1}{2}\right)\)

\(\Leftrightarrow cos^3x=sinx\left(\frac{1}{2}-2sin^2x\right)\)

\(\Leftrightarrow2cos^3x=sinx-4sin^3x\)

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(\Leftrightarrow2=tanx\left(1+tan^2x\right)-4tan^3x\)

\(\Leftrightarrow3tan^3x-tanx+2=0\)

\(\Leftrightarrow\left(tanx+1\right)\left(3tan^2x-3tanx+2\right)=0\)

\(\Leftrightarrow tanx=-1\Rightarrow x=-\frac{\pi}{4}+k\pi\)

Bình luận (0)
NL
18 tháng 8 2020 lúc 11:09

d/

\(\Leftrightarrow\left(cos^2x-sin^2x\right)\left(sinx+cosx\right)-4cos^3x\left(sin^2x+cos^2x+2sinx.cosx\right)=0\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(sinx+cosx\right)^2-4cos^3x\left(sinx+cosx\right)^2=0\)

\(\Leftrightarrow\left(cosx-sinx-4cos^3x\right)\left(sinx+cosx\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx-4cos^3x=0\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=0\Leftrightarrow x+\frac{\pi}{4}=k\pi\)

\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)

Xét \(\left(2\right)\), nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(\Leftrightarrow\frac{1}{cos^2x}-tanx.\frac{1}{cos^2x}-4=0\)

\(\Leftrightarrow1+tan^2x-tanx\left(1+tan^2x\right)-4=0\)

\(\Leftrightarrow-tan^3x+tan^2x-tanx-3=0\)

\(\Leftrightarrow\left(tanx+1\right)\left(tan^2x-2tanx+3\right)=0\)

\(\Leftrightarrow tanx=-1\Rightarrow x=-\frac{\pi}{4}+k\pi\)

Bình luận (0)
NL
18 tháng 8 2020 lúc 11:13

b/ ĐKXĐ: \(cos2x\ne0\Leftrightarrow2x\ne\frac{\pi}{2}+k\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

\(6sinx-2cos^3x=\frac{10sin2x.cos2x.sinx}{2cos2x}\)

\(\Leftrightarrow6sinx-2cos^3x=5sin2x.sinx\)

\(\Leftrightarrow3sinx-cos^3x=5cosx.sin^2x\)

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(3tanx\left(1+tan^2x\right)-1=5tan^2x\)

\(\Leftrightarrow3tan^3x-5tan^2x+3tanx-1=0\)

\(\Leftrightarrow\left(tanx-1\right)\left(3tan^2x-2tanx+1\right)=0\)

\(\Leftrightarrow tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\) (ko thỏa mãn ĐKXĐ)

Vậy pt vô nghiệm

Bình luận (0)

Các câu hỏi tương tự
JE
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
JP
Xem chi tiết
LN
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết