tìm x, biết:
a; | x - 2 | + | x - 5 | = 3
b, | x - 3 | + | 3x + 4 | - | 2x +1 | = 0
c, | x | + | x - 1 | + | x - 3 | = 5
d, 2 | x + \(3\frac{1}{2}\) + | x | - | x - \(2\frac{1}{5}\) = \(3\frac{1}{2}\)
b1:tìm x,biết
a)2x-15=17
b)156-(x+61)=82
c)2x-138=23.32
b2:tìm x,biết
a)23-3x=8
b)(x-35)-120=0
c)3x+2=29
mn giúp mik nha .cám ơn
`2x-15 = 17``
`=> 2x = 17 + 15`
`=> 2x = 32`
`=> X = 32 : 2`
`=> x = 16`
`156 - (x + 61) = 82`
`=> x + 61 = 156 - 82`
`=> x + 61 = 74`
`=> x = 13`
`2x - 138 = 2^3 . 3^2`
`=>2x - 138 = 72`
`=> 2x = 210`
`=> x = 105`
bài 2:
`23-3x = 8`
`=> 3x = 23 - 8`
`=> 3x = 15`
`=> x = 5`
`(x-35) - 120 = 0`
`=>(x-35) = 120`
`=> x = 120 +35`
`=> x = 155`
`3^x + 2 = 29`
`=> 3^x = 27`
`=> 3^x = 3^3`
`=> x = 3`
tìm x biết
a)x^2 + 3 x = 0
\(x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
\(x^2+3x=0\)
\(x\left(x+3\right)=0\)
x = 0 hoặc x +3 = 0
=> x = 0 hoặc x = -3
Vậy ...
x(x+3)=0
=> x=0 hoặc x=-3
=> x thuộc { 0; 3}
Tìm x biết
a) ( x - 14) - 20 = 0
`a)`
`(x - 14) - 20 = 0`
`=> x - 14 = 0 + 20`
`=> x - 14 = 20`
`=> x = 20 + 14`
`=> x = 34`
Vậy, `x = 34.`
tìm x , biết
a) 17/6- x( x-7/6)= 7/4
b) 3/35 - ( 3/5-x)= 2/7
tìm x thuộc Z , biết
3/4-5/6 < x/12 < 1 -( 2/3-1/4)
tìm x biết
a ) 2x-3=x + 1/2
b) 4x- ( x+ 1/2) = 2x - ( 1/2 - 5 )
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
Bài 3:
a) Ta có: \(2x-3=x+\dfrac{1}{2}\)
\(\Leftrightarrow2x-x=\dfrac{1}{2}+3\)
\(\Leftrightarrow x=\dfrac{7}{2}\)
b) Ta có: \(4x-\left(x+\dfrac{1}{2}\right)=2x-\left(\dfrac{1}{2}-5\right)\)
\(\Leftrightarrow3x-\dfrac{1}{2}-2x+\dfrac{1}{2}-5=0\)
\(\Leftrightarrow x=5\)
tìm |x| thuộc Q biết
a, x = -4/7
a) \(\left|x\right|=x\\ \left|-\dfrac{4}{7}\right|=\dfrac{4}{7}\)
tìm x,yez biết
a)1/2=x/-4
\(\dfrac{1}{2}=\dfrac{x}{-4}\\ \Rightarrow x=\dfrac{1.\left(-4\right)}{2}=\dfrac{-4}{2}=-2\)
\(a,\dfrac{1}{2}=\dfrac{x}{-4}\\ \Rightarrow1.\left(-4\right)=2.x=-4\\ \Rightarrow2.x=-4\\ \Rightarrow x=-4:2\\ \Rightarrow x=-2\)
Tìm x biết
a) x2 - 25=0
b) x (x + 7) + x + 7=0
a) x= + - 5
b) x\(\in\)\(\left\{-1;-7\right\}\)
a/ \(x^2-25=0\)
\(\Rightarrow\left(x+5\right)\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+5=0\Rightarrow x=-5\\x-5=0\Rightarrow x=5\end{matrix}\right.\)
b/ \(x\left(x+7\right)+x+7=0\)
\(x\left(x+7\right)+\left(x+7\right)=0\)
\(\left(x+7\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+7=0\Rightarrow x=-7\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)
a) x^2 - 25 = 0 <=> (x + 5)(x - 5) = 0
<=> x = -5 hoặc x = 5
b) x(x + 7) + x + 7 = 0 <=> (x + 7)(x + 1) = 0
<=> x = -7 hoặc x = -1
bài 3: tìm x, biết
a, (x-1)trên 3 = -27
(x-1)/3 = -27
=> x-1 = (-27) . 3 = - 81
=> x = (-81)+1 = -80
tìm X biết
a) x-12= - 15
b) 123-5.(x+4)=38
a) x-12=-15
x=-15+12
x=-3
b) 123-5(x+4)=38
5(x+4)=123-38
5(x+4)=85
x+4=85:5=17
x=17-4
x=13
\(a.x-12=-15\) \(b.123-5.\left(x+4\right)=38\)
\(x=\left(-15\right)+12\) \(5.\left(x+4\right)=123-38\)
\(x=-3\) \(5.\left(x+4\right)=85\)
\(x+4=85:5=17\)
\(x=17-4=13\)
a) x-12=-15
x=-15+12
x=-3
b) 123-5(x+4)=38
5(x+4)=123-38
5(x+4)=85
x+4=85:5=17
x=17-4
x=13
Tìm số x Z biết
a) (x - 6)2 = 9 b) |x| = 3
a) (x - 6)2 = 9
\(\Rightarrow\left[{}\begin{matrix}x-6=3\\x-6=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=9\\x=3\end{matrix}\right.\)
b) \(\left|x\right|=3\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)