Cho m > n, chứng minh:
a) m + 2 > n + 2; b) -2m < -2n
c) 2m – 5 > 2n – 5 d) 4 – 3m < 4 – 3m
Cho m > n, chứng minh:
a, m+2>n+2;
b, -2m<-2n;
c, 2m-5>2n-5
d, 4-3m<4-3n
a.m+2>n+2
Ta có: m >n
=>m+2 > n+2 (cộng hai vế với 2)
do đó m+2>n+2
b, -2m < -2n
Ta có: m > n
=> -2m < -2n (nhân hai vế với -2)
do đó -2m<-2n
c,2m-5>2n-5
Ta có: m>n
=>2m>2n (nhân hai vế với 2)
=>2m-5>2n-5 ( cộng hai vế với -5)
do đó 2m-5>2n-5
d,4-3m<4-3n
Ta có :m>n
=> -3m<-3n (nhân hai vế với -3)
=> 4-3m<4-3n (cộng 2 vế với 4)
chứng minh:a, m^2 +n^2 chia hết cho 3 suy ra m và n chia hết cho3
b, m^2 + n^2 chia hết cho 7 suy ra m và n chia hết cho 7
cho hình thang ABCD (AB//CD) DC> AB. Gọi M,N,P,Q lần lượt là trung điểm AD, BD, AC, BC. Chứng minh:
a) M,N,P,Q thẳng hàng
b) NP= (1/2).(DC-AB)
a,Vì \(\left\{{}\begin{matrix}AM=MD\\BQ=QC\end{matrix}\right.\) nên MQ là đtb hình thang ABCD \(\Rightarrow MQ//AB\left(1\right)\)
Vì \(\left\{{}\begin{matrix}AM=MD\\DN=NB\end{matrix}\right.;\left\{{}\begin{matrix}BQ=QC\\AP=PC\end{matrix}\right.\) nên MN,PQ lần lượt là đtb các tam giác ABD,ABC
\(\Rightarrow MN//AB\left(2\right);PQ//AB\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow MN;MQ;PQ\) trùng nhau hay M,N,P,Q thẳng hàng
b,Ta có \(NP=MQ-MN-PQ\)
\(\Rightarrow NP=\dfrac{AB+CD}{2}-\dfrac{AB}{2}-\dfrac{AB}{2}\left(t/c.đường.trung.bình\right)\\ \Rightarrow NP=\dfrac{CD-AB}{2}\)
cho abc thỏa mãn a≥-1;b,c<2 và a^2+b^2+c^2=6. chứng minh:a+b+c≥0
Đề bài sai bạn, \(a=0;b=c=-\sqrt{3}\) thì \(a^2+b^2+c^2=6\) và \(a+b+c< 0\)
Vẽ hình sau: Cho 2 đoạn thẳng AC và BD giao nhau tại trung điểm O của mỗi đoạn. Chứng minh:
a) AD = CD; AD // BC.
b) góc CDA = góc ABC.
c) Lấy M trên DC và lấy N trên AB sao cho DM = BN. Chứng minh M; O; N thẳng hàng.
d) Lấy E; F là trung điểm AD; BC. Chứng minh O là trung điểm EF.
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{AOD}=\widehat{COB}\)
OD=OB
Do đó: ΔOAD=ΔOCB
=>AD=CB và \(\widehat{OAD}=\widehat{OCB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC
b: Xét ΔOAB và ΔOCD có
OA=OC
\(\widehat{AOB}=\widehat{COD}\)
OB=OD
Do đó: ΔOAB=ΔOCD
=>AB=CD
Xét ΔABC và ΔCDA có
AB=CD
BC=DA
AC chung
Do đó: ΔABC=ΔCDA
=>\(\widehat{ABC}=\widehat{CDA}\)
c: Xét ΔOBN và ΔODM có
OB=OD
\(\widehat{OBN}=\widehat{ODM}\)
BN=DM
Do đó: ΔOBN=ΔODM
=>\(\widehat{BON}=\widehat{DOM}\)
mà \(\widehat{DOM}+\widehat{BOM}=180^0\)
nên \(\widehat{BON}+\widehat{BOM}=180^0\)
=>\(\widehat{MON}=90^0\)
=>M,O,N thẳng hàng
d: Xét ΔOAE và ΔOCF có
OA=OC
\(\widehat{AOE}=\widehat{COF}\)
AE=CF\(\left(AE=\dfrac{AD}{2}=\dfrac{BC}{2}=CF\right)\)
Do đó: ΔOAE=ΔOCF
=>\(\widehat{AOE}=\widehat{COF}\)
mà \(\widehat{AOE}+\widehat{EOC}=180^0\)
nên \(\widehat{COF}+\widehat{COE}=180^0\)
=>\(\widehat{FOE}=180^0\)
=>F,O,E thẳng hàng
mà OE=OF
nên O là trung điểm của EF
Cho tam giác ABC có M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh:
a) \(\overrightarrow {AP} + \frac{1}{2}\overrightarrow {BC} = \overrightarrow {AN} \)
b) \(\overrightarrow {BC} + 2\overrightarrow {MP} = \overrightarrow {BA} \)
a) Ta có: \(\overrightarrow {BC} ,\overrightarrow {PN} \) là hai vecto cùng hướng và \(\frac{1}{2}\left| {\overrightarrow {BC} } \right| = \left| {\overrightarrow {PN} } \right|\)
\( \Rightarrow \frac{1}{2}\overrightarrow {BC} = \overrightarrow {PN} \)\( \Rightarrow \overrightarrow {AP} + \frac{1}{2}\overrightarrow {BC} = \overrightarrow {AP} + \overrightarrow {PN} = \overrightarrow {AN} \)
b) Ta có: \(\overrightarrow {MP} ,\overrightarrow {CA} \) là hai vecto cùng hướng và \(2\left| {\overrightarrow {MP} } \right| = \left| {\overrightarrow {CA} } \right|\)
\( \Rightarrow 2\overrightarrow {MP} = \overrightarrow {CA} \)\( \Rightarrow \overrightarrow {BC} + 2\overrightarrow {MP} = \overrightarrow {BC} + \overrightarrow {CA} = \overrightarrow {BA} \)
Cho tam giác ABC nhộn. Gọi M N lần lượt là trung điểm của AB, AC. Kẻ AH vuông góc BC, gọi K là điểm đối xứng với N qua H. Chứng minh:
a) \(MN=\dfrac{1}{2}BC\)
b). AC=HK
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=1/2BC
b: Xét tứ giác AHCK có
N là trung điểm của AC
N là trung điểm của HK
Do đó: AHCK là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCK là hình chữ nhật
Suy ra: AC=HK
Cho tam giác ABC.Gọi M là trung điểm của cạnhAB,N là trung điểm của cạnh AC.Trên tia đối củ tia NM lấy điểm D sao cho ND=MN. Chứng minh:
a. AB//DC.
b.MN=\(\dfrac{1}{2}\)BC
a: Xét tứ giác ABCD có
N là trung điểm của AC
N là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN=1/2BC
a: Xét tứ giác ABCD có
N là trung điểm của AC
N là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Cho tam giác ABC.Gọi M là trung điểm của cạnhAB,N là trung điểm của cạnh AC.Trên tia đối củ tia NM lấy điểm D sao cho ND=MN. Chứng minh:
a. AB//DC.
b.MN=\(\dfrac{1}{2}\)BC
Cho a,b thỏa mãn a2+b2=1. Chứng minh:a\(\sqrt{b+1}\) +b\(\sqrt{a+1}\)<=\(\sqrt{2+\sqrt{ }2}\)
\(\left(a\sqrt{b+1}+b\sqrt{a+1}\right)^2\le\left(a^2+b^2\right)\left(a+b+2\right)=a+b+2\le\sqrt{2\left(a^2+b^2\right)}+2=2+\sqrt{2}\)
\(\Rightarrow a\sqrt{b+1}+b\sqrt{a+1}\le\sqrt{2+\sqrt{2}}\)