Những câu hỏi liên quan
NT
Xem chi tiết
NL
15 tháng 11 2019 lúc 22:12

a/ \(x^4+y^4=1\Rightarrow\left\{{}\begin{matrix}x^4\le1\\y^4\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x\right|\le1\\\left|y\right|\le1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^4\ge x^6\\y^4\ge y^6\end{matrix}\right.\) \(\Rightarrow x^6+y^6\le x^4+y^4\le1\)

Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x^4=x^6\\y^4=y^6\\x^4+y^4=1\end{matrix}\right.\)

\(\Leftrightarrow\left(x;y\right)=\left(1;0\right);\left(0;1\right);\left(-1;0\right);\left(0;-1\right)\)

b/ \(\Rightarrow x^9+y^4=1.\left(x^4+y^4\right)\)

\(\Rightarrow x^9+y^9=\left(x^5+y^5\right)\left(x^4+y^4\right)\)

\(\Rightarrow x^9+y^9=x^9+y^9+x^5y^4+x^4y^5\)

\(\Rightarrow x^4y^4\left(x+y\right)=0\Rightarrow\left[{}\begin{matrix}xy=0\\x=-y\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(0;1\right);\left(1;0\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
LL
7 tháng 10 2021 lúc 17:44

9) \(\left\{{}\begin{matrix}\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\\\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{21}{2x+y}+\dfrac{12}{2x-y}=222\\\dfrac{21}{2x+y}+\dfrac{14}{2x-y}=224\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{2x-y}=2\\\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=\dfrac{1}{10}\\2x-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2y=\dfrac{9}{10}\\2x+y=\dfrac{1}{10}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{9}{20}\\x=\dfrac{11}{40}\end{matrix}\right.\)

10) \(\left\{{}\begin{matrix}x=2y-1\\2x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-4y=-2\\2x-y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\3y=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{3}\\y=\dfrac{7}{3}\end{matrix}\right.\)

11) \(\left\{{}\begin{matrix}3x-6=0\\2y-x=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\y=\dfrac{x+4}{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

12) \(\left\{{}\begin{matrix}2x+y=5\\x+7y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\2x+14y=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\13y=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Bình luận (0)
LL
7 tháng 10 2021 lúc 17:52

13) \(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{4}{x}-\dfrac{5}{y}=3\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}-\dfrac{16}{y}=8\\\dfrac{12}{x}-\dfrac{15}{y}=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{1}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\y=1\left(tm\right)\end{matrix}\right.\)

14) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{x}+\dfrac{8}{y}=\dfrac{2}{3}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{7}{y}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=28\left(tm\right)\\y=21\left(tm\right)\end{matrix}\right.\)

15) \(\left\{{}\begin{matrix}2\sqrt{x-1}-\sqrt{y-1}=1\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)(ĐKXĐ: \(x\ge1,y\ge1\))

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}=3\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-1=1\end{matrix}\right.\)\(\Leftrightarrow x=y=2\left(tm\right)\)

Bình luận (0)
AP
Xem chi tiết
AH
2 tháng 12 2017 lúc 10:55

Lời giải:

Từ 2 phương trình ta có:

\(x^9+y^9=x^4+y^4=(x^4+y^4).1=(x^4+y^4)(x^5+y^5)\)

\(\Leftrightarrow x^9+y^9=x^9+y^9+x^4y^5+x^5y^4\)

\(\Leftrightarrow x^4y^5+x^5y^4=0\)

\(\Leftrightarrow x^4y^4(x+y)=0\)

Xét các TH sau:

TH1: \(x=0\Rightarrow y^5=1-x^5=1\Rightarrow y=1\) (thỏa mãn)

TH2: \(y=0\Rightarrow x^5=1-y^5=1\Rightarrow x=1\) (thỏa mãn)

TH3: \(x+y=0\Leftrightarrow y=-x\). Thay vào PT(1)

\(1=x^5+y^5=x^5+(-x)^5=x^5-x^5=0\) (vô lý)

Vậy \((x,y)=\left\{(0;1);(1;0)\right\}\)

Bình luận (0)
NT
Xem chi tiết
NM
7 tháng 10 2021 lúc 18:41

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\3-y+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}x-2x-1=3\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\left(-2\right)+1=-3\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}2x+3x-6=4\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\ 4,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y+2=3y+8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\\ 5,\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\\dfrac{3+3y}{2}-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\3+3y-8y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{y+1}{2}\\y=-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-\dfrac{1}{5}\end{matrix}\right.\)

Bình luận (0)
MT
Xem chi tiết
NL
29 tháng 7 2021 lúc 23:27

a.

\(\left\{{}\begin{matrix}x^3-y^3=16x-4y\\-4=5x^2-y^2\end{matrix}\right.\)

Nhân vế:

\(-4\left(x^3-y^3\right)=\left(16x-4y\right)\left(5x^2-y^2\right)\)

\(\Leftrightarrow21x^3-5x^2y-4xy^2=0\)

\(\Leftrightarrow x\left(7x-4y\right)\left(3x+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4y}{7}\\y=-3x\end{matrix}\right.\)

Thế vào \(y^2=5x^2+4...\)

Bình luận (0)
NL
29 tháng 7 2021 lúc 23:31

b. Đề bài không hợp lý ở \(4x^2\)

c.

\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=9\\3x^2+6y^2=3x-12y\end{matrix}\right.\)

Trừ vế:

\(x^3-y^3-3x^2-6y^2=9-3x+12y\)

\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)

\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)

\(\Leftrightarrow x-1=y+2\)

\(\Leftrightarrow y=x-3\)

Thế vào \(x^2=2y^2=x-4y\) ...

Bình luận (1)
NL
30 tháng 7 2021 lúc 11:28

b.

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+y^4-4xy^3=1\\4x^2+2y^2-4xy=2\end{matrix}\right.\)

\(\Rightarrow y^4-2y^2-4xy^3+4xy=-1\)

\(\Leftrightarrow\left(y^2-1\right)^2-4xy\left(y^2-1\right)=0\)

\(\Leftrightarrow\left(y^2-1\right)\left(y^2-1-4xy\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\\x=\dfrac{y^2-1}{4y}\end{matrix}\right.\)

Thế vào \(2x^2+y^2-2xy=1\) ...

Với \(x=\dfrac{y^2-1}{4y}\) ta được:

\(2\left(\dfrac{y^2-1}{4y}\right)^2+y^2-2\left(\dfrac{y^2-1}{4y}\right)y=1\)

\(\Leftrightarrow5y^4-6y^2+1=0\)

Bình luận (0)
H24
Xem chi tiết
PQ
9 tháng 2 2020 lúc 16:06

a) \(\left\{{}\begin{matrix}x+2y=-1\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y=-6\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)

Vậy..............................................................................

b) \(\left\{{}\begin{matrix}\frac{5}{x}-\frac{6}{y}=3\\\frac{4}{x}+\frac{9}{y}=7\end{matrix}\right.\)ĐKXĐ: x,y≠0

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{20}{x}-\frac{24}{y}=12\\\frac{20}{x}+\frac{45}{y}=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\frac{69}{y}=23\\\frac{20}{x}+\frac{45}{y}=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=10\end{matrix}\right.\)

Vậy...................................................................................

c) \(\left\{{}\begin{matrix}3\sqrt{x+1}+\sqrt{y-1}=1\\\sqrt{x+1}-\sqrt{y-1}=-2\end{matrix}\right.\)ĐKXĐ:\(\left\{{}\begin{matrix}x\ge-1\\y\ge1\end{matrix}\right.\)

\(\Rightarrow4\sqrt{x+1}\)\(=-1\)(vô nghiệm)

Vậy hệ pt vô nghiệm

d) Nhân 3 pt đầu rồi thu gọn

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
NT
27 tháng 1 2020 lúc 20:43

Hỏi đáp Toán

Bình luận (0)
 Khách vãng lai đã xóa
NT
27 tháng 1 2020 lúc 20:59

Hỏi đáp Toán

Bình luận (0)
 Khách vãng lai đã xóa
NT
27 tháng 1 2020 lúc 20:48

Hỏi đáp Toán

Bình luận (0)
 Khách vãng lai đã xóa
MT
Xem chi tiết
NL
30 tháng 7 2021 lúc 13:21

a.

Với \(y=0\) không phải nghiệm

Với \(y\ne0\Rightarrow\left\{{}\begin{matrix}3x+2=\dfrac{5}{y}\\2x\left(x+y\right)+y=\dfrac{5}{y}\end{matrix}\right.\)

\(\Rightarrow3x+2=2x\left(x+y\right)+y\)

\(\Leftrightarrow2x^2+\left(2y-3\right)x+y-2=0\)

\(\Delta=\left(2y-3\right)^2-8\left(y-2\right)=\left(2y-5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-2y+3+2y-5}{4}=-\dfrac{1}{2}\\x=\dfrac{-2y+3-2y+5}{4}=-y+2\end{matrix}\right.\)

Thế vào pt đầu ...

Câu b chắc chắn đề sai

Bình luận (0)
H24
Xem chi tiết
NT
10 tháng 12 2022 lúc 10:59

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1+2}{x-1}-\dfrac{5y+10-10}{y+2}=9\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x-1}+1-5+\dfrac{10}{y+2}=9\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x-1}+\dfrac{10}{y+2}=9+5-1=14-1=13\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)

=>x-1=2/7; y+2=5/3

=>x=9/7; y=-1/3

Bình luận (0)