Cho mặt phẳng \(\left(P\right):x+z-5=0\) và 2 điểm \(A\left(1;2;1\right);B\left(3;-2;3\right)\)
Tìm điểm M trên mặt phẳng (P) sao cho :\(MA^2+MB^2\) nhỏ nhất.
Cho điểm A(1,2,3)
đenta 1\(\left\{{}\begin{matrix}x=2-t\\y=t\\z=-1+2t\end{matrix}\right.\)
đenta 2 \(\left\{\dfrac{x+1}{1}=\dfrac{y}{1}=\dfrac{z-2}{-1}\right\}\)
a) Lập phương trình đường thẳng đenta1, đenta2 và vuông góc với mặt phẳng (P): x+y+z=0
b) Lập phương tình đường vuông góc chung của đường thẳng đenta 1 , đenta2
Trong hệ trục Oxyz, cho hai mặt cầu (S1)\(\left(x-1\right)^2+\left(y+3\right)^2+\left(z-2\right)^2=49\) và
(S2) \(\left(x-10\right)^2+\left(y-9\right)^2+\left(z-2\right)^2=400\) và mặt phẳng (P) : 4x-3y+mz+22=0 . Có bao nhiêu số
nguyên m để mp (P) cắt hai mặt cầu (S1), (S2) theo giao tuyến là hai đường tròn không có tiếp tuyến chung?
Trong không gian Oxyz, cho hai mặt phẳng :
\(\left(\beta\right):x+3ky-z+2=0\)
\(\left(\gamma\right):kx-y+z+1=0\)
Tìm k để giao tuyến của \(\left(\beta\right)\) và \(\left(\gamma\right)\) vuông góc với mặt phẳng
\(\left(\alpha\right):x-y-2z+5=0\)
Ta có \(\overrightarrow{n}_{\beta}=\left(1;3k;-1\right);\overrightarrow{n}_{\gamma}=\left(k;-1;1\right)\)
Gọi \(d_k=\beta\cap\gamma\)
Cho điểm \(M\left(1;4;2\right)\) và mặt phẳng \(\left(\alpha\right):x+y+z-1=0\) :
a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng \(\left(\alpha\right)\)
b) Tìm tọa độ điểm M' đối xứng với M qua mặt phẳng \(\left(\alpha\right)\)
c) Tính khoảng cách từ điểm M đến mặt phẳng \(\left(\alpha\right)\)
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P) : x+y+z-1=0 và hai điểm A(1;-3;0),B(5;-1;-2).Tìm tọa độ điểm M trên mặt phẳng (P) sao cho \(\left|MA-MB\right|\) đạt giá trị lớn nhất.
Trong không gian \(Oxyz\) ,cho đường thẳng \(d:\dfrac{x}{-1}=\dfrac{y-1}{2}=\dfrac{z-1}{-5}\) và mặt phẳng \(\left(P\right):x-2y+5z-1=0\).Số mặt phẳng chứa \(d\) và vuông góc với mặt phẳng \(\left(P\right)\) là
d nhận \(\overrightarrow{u}=\left(-1;2;-5\right)\) là 1 vtcp
(P) nhận \(\overrightarrow{n}=\left(1;-2;5\right)\) là 1 vtpt
Do \(\overrightarrow{u}=-\overrightarrow{n}\Rightarrow\overrightarrow{u}\) và \(\overrightarrow{n}\) cùng phương hay \(d\perp\left(P\right)\)
\(\Rightarrow\) Có vô số mặt phẳng chứa d và vuông góc (P)
Viết phương trình mặt phẳng đi qua điểm A(1;1;1) đồng thời vuông góc với cả 2 mặt phẳng :
\(\left(P\right):x+2y+3z+4=0\)
\(\left(Q\right):3x+2y-z=1=0\)
Mặt phẳng (P) có vecto pháp tuyến \(\overrightarrow{p}=\left(1;2;3\right)\)
Mặt phẳng (Q) có vecto pháp tuyến \(\overrightarrow{q}=\left(3;2-1\right)\)
Vì \(1:2:3\ne3:2:\left(-1\right)\) nen (P) và (Q) cắt nhau.
Do mặt phẳng (R) cần tìm có phương trình vuông góc với cả (P) và (Q) nên (R) nhận 2 vecto \(\overrightarrow{p}\) và \(\overrightarrow{q}\) làm cặp vecto chỉ phương.
Vậy mặt phẳng (R) có vecto pháp tuyến \(\overrightarrow{r}\) cùng phương với vecto :
\(\left[\overrightarrow{p};\overrightarrow{q}\right]=\left(\left|\begin{matrix}2&3\\2&-1\end{matrix}\right|;\left|\begin{matrix}3&1\\-1&3\end{matrix}\right|;\left|\begin{matrix}1&2\\3&2\end{matrix}\right|\right)\)
\(=\left(-8;10;-4\right)=-2\left(4;-5;2\right)\)
Do đó có thể chọn \(\overrightarrow{r}=\left(4;-5;2\right)\)
Suy ra (R) có phương trình :
\(4\left(x-1\right)-5\left(y-1\right)+2\left(z-1\right)=0\)
hay \(\left(R\right):4x-5y+3z-1=0\)
Cho 3 điểm \(A\left(1;2;-3\right);B\left(2;4;5\right);C\left(3;6;7\right)\) và mặt phẳng \(\left(P\right):x+y+z-3=0\)
Tìm trên mặt phẳng (P) điểm D sao cho vecto \(\overrightarrow{v}=\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}\) có độ dài ngắn nhất
Gọi G là điểm sao cho \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\) (G là trọng tâm của tam giác ABC)
Khi đó \(G\left(2;4;3\right)\) và \(\overrightarrow{v}=\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}=3\overrightarrow{DG}\)
Vậy điểm \(D\in\left(P\right)\) mà \(\left|\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}\right|\) bé nhất khi và chỉ khi D là hình chiếu của G trên mặt phẳng (P). Khi đó vecto \(\overrightarrow{GD}\) cùng phương với vecto pháp tuyến của (P) và điểm D nằm trên mặt phẳng (P) nên ta có hệ :
\(\begin{cases}\frac{x-2}{1}=\frac{y-4}{1}=\frac{z-3}{1}\\x+y+z-3=0\end{cases}\)
Giải hệ ta được : x = 0 ;y = 2; z = 1
Vậy điểm D cần tìm là \(D\left(0;2;1\right)\)
Trong không gian với hệ trục toạ độ \(Oxyz\), cho mặt phẳng \(\left(P\right):x+y-z+2=0\) và hai đường thẳng \(d:\left\{{}\begin{matrix}x=1+t\\y=t\\z=2+2t\end{matrix}\right.\) và \(d':\left\{{}\begin{matrix}x=3-t'\\y=1+t'\\z=1-2t'\end{matrix}\right.\). Biết rằng có hai đường thẳng có các đặc điểm: song song với \(\left(P\right)\), cắt \(d\), \(d'\) và tạo với \(d\) góc \(30^\circ\). Gọi hai đường thẳng đó là \(\Delta_1\) và \(\Delta_2\), tính \(\cos\widehat{\left(\Delta_1;\Delta_2\right)}=?\)
A. \(\dfrac{1}{\sqrt{2}}\)
B. \(\dfrac{1}{\sqrt{5}}\)
C. \(\dfrac{1}{2}\)
D. \(\sqrt{\dfrac{2}{3}}\)
Để tính cos(Δ1;Δ2), ta cần tìm vector chỉ phương của hai đường thẳng Δ1 và Δ2.
Vector chỉ phương của đường thẳng d là (1, t, 2) và vector chỉ phương của đường thẳng d' là (-1, 1, -2).
Để tìm vector chỉ phương của mặt phẳng (P), ta lấy vector pháp tuyến của mặt phẳng. Ta có vector pháp tuyến của mặt phẳng (P) là (1, 1, -1).
Để hai đường thẳng Δ1 và Δ2 song song với mặt phẳng (P), ta có điều kiện là vector chỉ phương của Δ1 và Δ2 cũng phải song song với vector pháp tuyến của mặt phẳng (P). Vì vậy, ta cần tìm vector chỉ phương của Δ1 và Δ2 sao cho chúng song song với vector (1, 1, -1).
Ta có thể tìm vector chỉ phương của Δ1 và Δ2 bằng cách lấy tích vector của vector chỉ phương của d hoặc d' với vector pháp tuyến của mặt phẳng (P).
Tính tích vector của (1, t, 2) và (1, 1, -1): (1, t, 2) x (1, 1, -1) = (t-3, 3t+1, -t-1)
Tính tích vector của (-1, 1, -2) và (1, 1, -1): (-1, 1, -2) x (1, 1, -1) = (-1, -3, -2)
Hai vector trên là vector chỉ phương của Δ1 và Δ2. Để tính cos(Δ1;Δ2), ta sử dụng công thức:
cos(Δ1;Δ2) = (Δ1.Δ2) / (|Δ1|.|Δ2|)
Trong đó, Δ1.Δ2 là tích vô hướng của hai vector chỉ phương, |Δ1| và |Δ2| là độ dài của hai vector chỉ phương.
Tính tích vô hướng Δ1.Δ2: (t-3)(-1) + (3t+1)(-3) + (-t-1)(-2) = -t-3
Tính độ dài của Δ1: |Δ1| = √[(t-3)² + (3t+1)² + (-t-1)²] = √[11t² + 2t + 11]
Tính độ dài của Δ2: |Δ2| = √[(-1)² + (-3)² + (-2)²] = √[14]
Vậy, cos(Δ1;Δ2) = (-t-3) / (√[11t² + 2t + 11] * √[14])
Để tính giá trị của cos(Δ1;Δ2), ta cần biết giá trị của t. Tuy nhiên, trong câu hỏi không cung cấp giá trị cụ thể của t nên không thể tính được giá trị chính xác của cos(Δ1;Δ2).