Bài 2.1: Khoảng cách từ điểm đến mặt phẳng

PT

Cho mặt phẳng \(\left(P\right):x+z-5=0\) và 2 điểm \(A\left(1;2;1\right);B\left(3;-2;3\right)\)

Tìm điểm M trên mặt phẳng (P) sao cho :\(MA^2+MB^2\) nhỏ nhất.

NH
17 tháng 5 2016 lúc 21:52

Gọi I là trung điểm của đoạn thẳng AB. Khi đó \(I\left(2;0;2\right)\) với mọi điểm M đều có :

\(MA^2+MB^2=\overrightarrow{MA^2}+\overrightarrow{MB^2}\)

                       \(=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IB}\right)^2\)

                       \(=2MI^2+\left(IA^2+IB^2\right)=2MI^2+\frac{AB^2}{2}\)

Do đó \(M\in\left(P\right)\) sao cho \(MA^2+MB^2\) bé nhất khi và chỉ khi M là hình chiếu của I trên mặt phẳng (P)

Gọi \(\left(x;y;z\right)\) là tọa độ hình chiếu vuông góc của điểm I trên mặt phẳng (P). Khi đó ta có hệ phương trình :

\(\begin{cases}x+y+z-6=0\\\frac{x-2}{1}=\frac{y-0}{1}=\frac{z-2}{1}\end{cases}\)

Giải hệ thu được :

\(x=\frac{8}{3};y=\frac{2}{3};z=\frac{8}{3}\)

Vậy điểm M cần tìm là \(M\left(\frac{8}{3};\frac{2}{3};\frac{8}{3}\right)\)

Bình luận (0)

Các câu hỏi tương tự
ML
Xem chi tiết
DQ
Xem chi tiết
NU
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
MA
Xem chi tiết
TV
Xem chi tiết
TH
Xem chi tiết