Bài 2.2: Vị trí tương đối giữa hai mặt phẳng

BA

Viết phương trình mặt phẳng đi qua điểm A(1;1;1) đồng thời vuông góc với cả 2 mặt phẳng :

\(\left(P\right):x+2y+3z+4=0\)

\(\left(Q\right):3x+2y-z=1=0\)

NN
13 tháng 5 2016 lúc 21:31

Mặt phẳng (P) có vecto pháp tuyến \(\overrightarrow{p}=\left(1;2;3\right)\)

Mặt phẳng (Q) có vecto pháp tuyến \(\overrightarrow{q}=\left(3;2-1\right)\)

Vì \(1:2:3\ne3:2:\left(-1\right)\) nen (P) và (Q) cắt nhau.

Do mặt phẳng (R) cần tìm có phương trình vuông  góc với cả (P) và (Q) nên (R) nhận 2 vecto \(\overrightarrow{p}\) và \(\overrightarrow{q}\) làm cặp vecto chỉ phương. 

Vậy mặt phẳng (R) có vecto pháp tuyến \(\overrightarrow{r}\) cùng phương với vecto :

\(\left[\overrightarrow{p};\overrightarrow{q}\right]=\left(\left|\begin{matrix}2&3\\2&-1\end{matrix}\right|;\left|\begin{matrix}3&1\\-1&3\end{matrix}\right|;\left|\begin{matrix}1&2\\3&2\end{matrix}\right|\right)\)

              \(=\left(-8;10;-4\right)=-2\left(4;-5;2\right)\)

Do đó có thể chọn \(\overrightarrow{r}=\left(4;-5;2\right)\)

Suy ra (R) có phương trình :

\(4\left(x-1\right)-5\left(y-1\right)+2\left(z-1\right)=0\)

hay \(\left(R\right):4x-5y+3z-1=0\)

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
KM
Xem chi tiết
VA
Xem chi tiết
HN
Xem chi tiết
HN
Xem chi tiết
DT
Xem chi tiết
VA
Xem chi tiết