Những câu hỏi liên quan
LP
Xem chi tiết
NT
31 tháng 7 2023 lúc 14:49

2:

a: Sửa đề: \(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)

\(A=\dfrac{a^2+3}{\sqrt{a^2+2}}=\dfrac{a^2+2+1}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\dfrac{1}{\sqrt{a^2+2}}\)

=>\(A>=2\cdot\sqrt{\sqrt{a^2+2}\cdot\dfrac{1}{\sqrt{a^2+2}}}=2\)

A=2 thì a^2+2=1

=>a^2=-1(loại)

=>A>2 với mọi a

b: \(\Leftrightarrow\sqrt{a}+\sqrt{b}< =\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\)

=>\(a\sqrt{a}+b\sqrt{b}>=a\sqrt{b}+b\sqrt{a}\)

=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)-\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)>=0\)

=>(căn a+căn b)(a-2*căn ab+b)>=0

=>(căn a+căn b)(căn a-căn b)^2>=0(luôn đúng)

 

Bình luận (0)
GH
31 tháng 7 2023 lúc 15:14

1

ĐK: `x>1`

PT trở thành:

\(\sqrt{\dfrac{2x-3}{x-1}}=2\\ \Leftrightarrow\dfrac{2x-3}{x-1}=2^2=4\\ \Leftrightarrow4x-4-2x+3=0\\ \Leftrightarrow2x-1=0\\ \Leftrightarrow x=\dfrac{1}{2}\left(KTM\right)\)

Vậy PT vô nghiệm.

b

ĐK: \(x\ge2\)

Đặt \(t=\sqrt{x-2}\) (\(t\ge0\))

=> \(x=t^2+2\)

PT trở thành: \(t^2+2-5t+2=0\)

\(\Leftrightarrow t^2-5t+4=0\)

nhẩm nghiệm: `a+b+c=0` (`1+(-5)+4=0`)

\(\Rightarrow\left\{{}\begin{matrix}t=1\left(nhận\right)\\t=4\left(nhận\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{x-2}=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\left(TM\right)\\x=18\left(TM\right)\end{matrix}\right.\)

Bình luận (0)
JL
Xem chi tiết
TT
Xem chi tiết
NN
9 tháng 5 2016 lúc 10:48

Điều kiện \(x^2-2x\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le0\end{array}\right.\) khi đó :

Bất phương trình \(\Leftrightarrow3^{\sqrt{x^2-2x}}\ge\left(3\right)^{\sqrt{\left(x-1\right)^2}-x}\Leftrightarrow\sqrt{x^2-2x}\ge\left|x-1\right|-x\)

- Khi \(x\ge2\Rightarrow x-1>0\) nên bất phương trình \(\sqrt{x^2-2x}\ge-1\) đúng với mọi \(x\ge2\)

- Khi \(x\le0\Rightarrow x-1< 0\) nên bất phương trình \(\sqrt{x^2-2x}\ge1-2x\)

                                                                 \(\Leftrightarrow\begin{cases}x^2-2x\ge1-4x+4x^2\\x\le0\end{cases}\) vô nghiệm

Vậy tập nghiệm của bất phương trình là : S = [2;\(+\infty\) )

 

Bình luận (0)
TT
Xem chi tiết
NT
Xem chi tiết
NM
24 tháng 11 2019 lúc 9:52

Đặt \(\hept{\begin{cases}\sqrt[3]{x+1}=a\\\sqrt[3]{2x^2}=b\end{cases}}\)

\(\Rightarrow a+\sqrt[3]{x^3+1}< b+\sqrt[3]{b^3+1}\)

Dễ thấy hàm số dạng \(f\left(t\right)=t+\sqrt[3]{t^3+1}\)đồng biến trên R nên

\(\Rightarrow a< b\)

\(\Leftrightarrow\sqrt[3]{x+1}< \sqrt[3]{2x^2}\)

\(\Leftrightarrow2x^2-x-1>0\)

\(\Leftrightarrow\orbr{\begin{cases}x>1\\x< -\frac{1}{2}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NC
28 tháng 11 2019 lúc 17:43

Cách khác: Dùng liên hợp.

bpt <=> \(\left(\sqrt[3]{2x^2}-\sqrt[3]{x+1}\right)+\left(\sqrt[3]{2x^2+1}-\sqrt[3]{x+2}\right)>0\)

<=> \(\frac{2x^2-x-1}{\left(\sqrt[3]{2x^2}\right)^2+\sqrt[3]{2x^2}.\sqrt[3]{x+1}+\left(\sqrt[3]{x+1}\right)^2}\)

\(+\frac{2x^2-x-1}{\left(\sqrt[3]{2x^2+1}\right)^2+\sqrt[3]{2x^2+1}.\sqrt[3]{x+2}+\left(\sqrt[3]{x+2}\right)^2}>0\)

<=> \(2x^2-x-1>0\)

Bình luận (0)
 Khách vãng lai đã xóa
VS
Xem chi tiết
NT
22 tháng 3 2023 lúc 0:17

\(\Leftrightarrow\left(\sqrt[3]{x+1}-1\right)+\left(\sqrt{2x+4}-2\right)< -x\sqrt{2}\)

=>\(\dfrac{x+1-1}{\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1}+\dfrac{2x+4-4}{\sqrt{2x+4}+2}+x\sqrt{2}< 0\)

=>x<0

=>-1<x<0

Bình luận (0)
BL
Xem chi tiết
NL
16 tháng 4 2022 lúc 19:43

a.

\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1\le x\le3\)

Bình luận (0)
NL
16 tháng 4 2022 lúc 19:48

b.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)

Bình luận (0)
NL
16 tháng 4 2022 lúc 19:52

Câu b còn 1 cách giải nữa:

Với \(x=0\) không phải nghiệm

Với \(x>0\) , chia 2 vế cho \(\sqrt{x}\) ta được:

\(\sqrt{2x+8+\dfrac{5}{x}}+\sqrt{2x-4+\dfrac{5}{x}}=6\)

Đặt \(\sqrt{2x-4+\dfrac{5}{x}}=t>0\Leftrightarrow2x+8+\dfrac{5}{x}=t^2+12\)

Phương trình trở thành:

\(\sqrt{t^2+12}+t=6\)

\(\Leftrightarrow\sqrt{t^2+12}=6-t\)

\(\Leftrightarrow\left\{{}\begin{matrix}6-t\ge0\\t^2+12=\left(6-t\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\le6\\12t=24\end{matrix}\right.\)

\(\Rightarrow t=2\)

\(\Rightarrow\sqrt{2x-4+\dfrac{5}{x}}=2\)

\(\Leftrightarrow2x-4+\dfrac{5}{x}=4\)

\(\Rightarrow2x^2-8x+5=0\)

\(\Leftrightarrow...\)

Bình luận (0)
LC
Xem chi tiết
NH
Xem chi tiết
NL
20 tháng 4 2019 lúc 16:56

2/ \(\left[{}\begin{matrix}x< -12\\x>12\end{matrix}\right.\)

- Với \(x< -12\Rightarrow x+\frac{12x}{\sqrt{x^2-144}}=x\left(1+\frac{12}{\sqrt{x^2-144}}\right)< 0< 35\)

\(\Rightarrow\) BPT luôn đúng

- Với \(x>12\), hai vế không âm, bình phương hai vế ta được:

\(x^2+\frac{144x^2}{x^2-144}+24\frac{x^2}{\sqrt{x^2-144}}-1225\le0\)

\(\Leftrightarrow\frac{x^4}{x^2-144}+24\frac{x^2}{\sqrt{x^2-144}}-1225\le0\)

\(\Leftrightarrow\left(\frac{x^2}{\sqrt{x^2-144}}+49\right)\left(\frac{x^2}{\sqrt{x^2-144}}-25\right)\le0\)

\(\Leftrightarrow\frac{x^2}{\sqrt{x^2-144}}-25\le0\)

\(\Leftrightarrow x^2\le25\sqrt{x^2-144}\)

\(\Leftrightarrow x^4-625x^2+90000\le0\)

\(\Leftrightarrow\left(x^2-400\right)\left(x^2-225\right)\le0\)

\(\Leftrightarrow225\le x^2\le400\)

\(\Leftrightarrow15\le x\le20\)

Vậy nghiệm của BPT là \(\left[{}\begin{matrix}x< -12\\15\le x\le20\end{matrix}\right.\)

Bình luận (0)