Trong tam giác ABC cân tại A, góc B= 60. Góc tại đỉnh A là :
1.Cho tam giác ABC cân đỉnh A, góc BAx là góc ngoài tại đỉnh A của tam giác ABC. Chứng minh rằng góc BAx bằng 2.B
2.Cho tam giác ABC có góc A bằng 90, góc B bằng 60. Chứng minh rằng AB = 1/2 BC.
Cho tam giác ABC cân tại A,biết :
a) Góc đỉnh bằng 60 độ
b)Hai Góc đấy bằng 60 độ
Tính các góc còn lại của tam giác đó ?
cho hết rồi tính chi nữa
1 tam giác có 3 góc cho hết 3 góc rồi thì tính tam giác nào nữa vậy bạn
So sánh các cạnh của tam giác ABC biết A) góc ngoài của đỉnh góc A =120° ; góc B = 50° B) tam giác ABC cân tại A ,A>60° C) A=40° và số đo góc B và C tỉ lệ với 3 ; 4
c) Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow\widehat{B}+\widehat{C}=180^0-40^0=140^0\)
Ta có: \(\widehat{B}:\widehat{C}=3:4\)(gt)
nên \(\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{4}\)
mà \(\widehat{B}+\widehat{C}=140^0\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{B}+\widehat{C}}{3+4}=\dfrac{140^0}{7}=20^0\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{\widehat{B}}{3}=20^0\\\dfrac{\widehat{C}}{4}=20^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{B}=60^0\\\widehat{C}=80^0\end{matrix}\right.\)
Xét ΔABC có \(\widehat{A}< \widehat{B}< \widehat{C}\left(40^0< 60^0< 80^0\right)\)
mà cạnh đối diện với \(\widehat{A}\) là cạnh BC
cạnh đối diện với \(\widehat{B}\) là cạnh AC
và cạnh đối diện với \(\widehat{C}\) là cạnh AB
nên BC<AC<AB
Cho tam giác ABC vuông cân tại đỉnh A, các tia phân giác trong AD và CE của góc A và góc C cắt nhau tại O. Đường phân giác góc B của tam giác ABC cắt AC tại F
a) Góc FBO = 90 độ
b) DF là tia phân giác góc D của tam giác ADB
c) D , E , F thẳng hàng
Cho tam giác ABC vuông cân tại đỉnh A, các tia phân giác góc trong AD và CE của góc A và góc C cắt nhau tại O. Đường phân giác góc ngoài góc B của tam giác ABC cắt AC tại F. Chứng minh
a) góc FBO=90 độ
b) DF là tia phân giác của góc D của tam giác ABC
c) D,E,F thằng hàng
Cho tam giác ABC và góc A=60 độ.Cho các tia phân giác trong của góc B và góc C của tam giác ABC cắt nhau tại I, còn các tia phân giác của góc ngoài tại đỉnh B và C của tam giác cắt nhau tại K.
a,Tính BIC và BKC theo góc A của tam giác ABC
b,Gọi giao điểm của các tia BI và KC là D. Tính BDC
Vì BI và CI là phân giác ABC và ACB
=> ABI = IBC
=> ACI = ICB
=> BIC = 180° - ( IBC + ICB )
Mà ABC + ACB = 180° - A
=> IBC + ICB = \(\frac{180°-\alpha}{2}\)
=> BIC = 180° - \(\frac{180°-\alpha}{2}\)
Cho tam giác ABC vuông tại góc A và góc B=60 độ.Phân giác góc B căt cạnh AC tại D,kẻ DE vuông góc với BC tại E.
CMR:a) Tam giác ABD = tam giác EBD;BA = BE.
b) Tam giác BDC là tam giác cân tại D.
a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>BA=BE
b: Xét ΔDBC có góc DBC=góc DCB
nên ΔDBC cân tại D
Cho tam giác ABC có Góc A = 40 độ; góc B= 60 độ. góc ACD là góc ngoài tại đỉnh C của tam giác ABC. Tính góc C và góc ACD?
tam giác ABC cân tại A, góc BAC < 60 độ. Trên nửa mặt phẳng bờ AC chứa B, vẽ Ax để góc xAC = góc ACB. E đối xứng C qua Ax. Nối BE cắt Ax tại D. Các đường thẳng CD, CE cắt AB lần lượt tại I và K. CMR : a.AC là pg góc ngoài đỉnh A của tam giác ABE. b. ACDE là hình thoi c.AK.AB= BK.AI
a) -Ta có: EA=AC=AB => góc AEC= 90 độ- góc EAC/2 và góc AEB= 90 độ- góc EAB/2.
-Lấy góc AEB- góc AEC = góc BEC= góc BAC/2 (1).
-Ta lại có: góc DAC= góc ACB= 90 độ- góc BAC/2.
góc DAC+ góc ACE= 90 độ.
=> góc ACE= góc BAC/2 (2).
-Từ (1);(2) => góc DEC= góc ACE => ED//AC và có EA=AC; DE=DC.
=> DEAC là hình thoi.
(ABCD không phải là hình thoi).
bạn ơi bạn c/m câu a hộ mình ạ, c/ AC là p/g góc ngoài ạ