DT

So sánh các cạnh của tam giác ABC biết A) góc ngoài của đỉnh góc A =120° ; góc B = 50° B) tam giác ABC cân tại A ,A>60° C) A=40° và số đo góc B và C tỉ lệ với 3 ; 4

NT
22 tháng 3 2021 lúc 20:05

c) Xét ΔABC có 

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(Định lí tổng ba góc trong một tam giác)

\(\Leftrightarrow\widehat{B}+\widehat{C}=180^0-40^0=140^0\)

Ta có: \(\widehat{B}:\widehat{C}=3:4\)(gt)

nên \(\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{4}\)

mà \(\widehat{B}+\widehat{C}=140^0\)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{B}+\widehat{C}}{3+4}=\dfrac{140^0}{7}=20^0\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{\widehat{B}}{3}=20^0\\\dfrac{\widehat{C}}{4}=20^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{B}=60^0\\\widehat{C}=80^0\end{matrix}\right.\)

Xét ΔABC có \(\widehat{A}< \widehat{B}< \widehat{C}\left(40^0< 60^0< 80^0\right)\)

mà cạnh đối diện với \(\widehat{A}\) là cạnh BC

cạnh đối diện với \(\widehat{B}\) là cạnh AC

và cạnh đối diện với \(\widehat{C}\) là cạnh AB

nên BC<AC<AB

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NG
Xem chi tiết
CN
Xem chi tiết
NH
Xem chi tiết
PB
Xem chi tiết
UT
Xem chi tiết
AT
Xem chi tiết
VA
Xem chi tiết
N1
Xem chi tiết