Giải bất phương trình :
\(8^{\sqrt{x}}-8^{1-\sqrt{x}}< 1\)
Giải bất phương trình: \(\dfrac{8-x}{\sqrt{9-x}}-\dfrac{2-x}{\sqrt{x-1}}\ge3\)
ĐKXĐ: \(1< x< 9\)
Đặt \(\left\{{}\begin{matrix}\sqrt{9-x}=a\\\sqrt{x-1}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a;b>0\\a^2+b^2=8\end{matrix}\right.\) \(\Rightarrow\left(a+b\right)^2\le16\Rightarrow a+b\le4\)
\(BPT\Leftrightarrow\dfrac{a^2-1}{a}+\dfrac{b^2-1}{b}\ge3\) (1)
Đặt \(P=\dfrac{a^2-1}{a}+\dfrac{b^2-1}{b}-3\)
\(P=a+b-\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-3\le a+b-\dfrac{4}{a+b}-3\)
\(P\le\dfrac{\left(a+b\right)^2-3\left(a+b\right)-4}{a+b}=\dfrac{\left(a+b+1\right)\left(a+b-4\right)}{a+b}\le0\)
\(\Rightarrow\dfrac{a^2-1}{a}+\dfrac{b^2-1}{b}\le3\) (2)
(1); (2) \(\Rightarrow\dfrac{a^2-1}{a}+\dfrac{b^2-1}{b}=3\)
Dấu "=" xảy ra khi và chỉ khi: \(a=b=2\Leftrightarrow x=5\)
Vậy BPT đã cho có nghiệm duy nhất \(x=5\)
Giải các bất phương trình
a) \(x+2\le\sqrt[3]{x^3+8}\)
b)\(\sqrt{\dfrac{1}{x^2}-\dfrac{3}{4}}< \dfrac{1}{x}-\dfrac{1}{2}\)
Giải bất phương trình :
\(\sqrt{2^{x+1}}.\sqrt[3]{4^{2x-1}}.8^{3-x}>2\sqrt{2}.0,0125\)
Bất phương trình : \(\Leftrightarrow2^{\frac{x+1}{2}}.2^{\frac{4x-2}{3}}.2^{9-3x}>2^{\frac{3}{2}}.2^{-3}\)
\(\Leftrightarrow2^{\frac{x+1}{2}+\frac{4x-2}{3}+9-3x}>2^{\frac{3}{2}-3}\)
\(\Leftrightarrow x< \frac{62}{7}\)
Vậy bất phương trình có tập nghiệm là \(S=\left(-\infty;\frac{62}{7}\right)\)
Giải bất phương trình sau : \(2\sqrt{1-\frac{2}{x}}+\sqrt{2x+\frac{8}{x}}\ge x\)
Giải các bất phương trình sau:
1) \(\dfrac{\text{x}-1}{x-3}>1\) 2) \(\sqrt{\text{x}^2+x-12}< 8-x\)
1:
ĐKXĐ: x<>3
\(\dfrac{x-1}{x-3}>1\)
=>\(\dfrac{x-1-\left(x-3\right)}{x-3}>0\)
=>\(\dfrac{x-1-x+3}{x-3}>0\)
=>\(\dfrac{2}{x-3}>0\)
=>x-3>0
=>x>3
2: ĐKXĐ: \(\left[{}\begin{matrix}x>=3\\x< =-4\end{matrix}\right.\)
\(\sqrt{x^2+x-12}< 8-x\)
=>\(\left\{{}\begin{matrix}8-x>=0\\x^2+x-12< \left(8-x\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =8\\x^2+x-12-x^2+16x-64< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =8\\17x-76< 0\end{matrix}\right.\)
=>\(x< \dfrac{76}{17}\)
Kết hợp ĐKXĐ, ta được: \(\left[{}\begin{matrix}3< =x< \dfrac{76}{17}\\x< =-4\end{matrix}\right.\)
Giải bất phương trình sau mà ko bình phương 2 vế
\(\sqrt{x+3}-\sqrt{7-x}>\sqrt{2x-8}\)
Giải bất phương trình :
a, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}\dfrac{< }{ }5\sqrt{x+1}\)
b, \(2x\sqrt{x}+\dfrac{5-4x}{\sqrt{x}}\dfrac{>}{ }\sqrt{x+\dfrac{10}{x}-2}\)
c, \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8< 0\)
Giải bất phương trình sau : a/ 2x ^ 2 + 6x - 8 < 0 x ^ 2 + 5x + 4 >=\ 2) Giải phương trình sau : a/ sqrt(2x ^ 2 - 4x - 2) = sqrt(x ^ 2 - x - 2) c/ sqrt(2x ^ 2 - 4x + 2) = sqrt(x ^ 2 - x - 3) b/ x ^ 2 + 5x + 4 < 0 d/ 2x ^ 2 + 6x - 8 > 0 b/ sqrt(- x ^ 2 - 5x + 2) = sqrt(x ^ 2 - 2x - 3) d/ sqrt(- x ^ 2 + 6x - 4) = sqrt(x ^ 2 - 2x - 7)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)