Những câu hỏi liên quan
DX
Xem chi tiết
NT
8 tháng 3 2021 lúc 20:17

d) Ta có: \(n^2+5n+9⋮n+3\)

\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)

\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)

mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)

nên \(3⋮n+3\)

\(\Leftrightarrow n+3\inƯ\left(3\right)\)

\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{-2;-4;0;-6\right\}\)

Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)

Bình luận (0)
TP
8 tháng 3 2021 lúc 20:18

d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3

⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3

⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3

mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3

nên 3⋮n+33⋮n+3

⇔n+3∈Ư(3)⇔n+3∈Ư(3)

⇔n+3∈{1;−1;3;−3}

Bình luận (0)
TD
8 tháng 3 2021 lúc 20:20

`b)` - Ta thấy : `|x+1|+|x-2|+|x+7|>=0`

`-> 5x-10>=0`

`-> 5x>=10`

`-> x>=2`

`-> |x+1|=x+1;|x-2|=x-2;|x+7|=x+7`

- Vậy ta có :

`(x+1)+(x-2)+(x+7)=5x-10`

`<=> x+1+x-2+x+7=5x-10`

`<=> 3x+6=5x-10`

`<=> 3x-5x=-10-6`

`<=> -2x=-16`

`<=> x=8`

Bình luận (0)
NA
Xem chi tiết
NT
3 tháng 2 2022 lúc 22:27

a: Gọi số cần tìm có dạng là \(\overline{abc}\)

Vì \(\overline{abc}⋮18\) nên a+b+c=18

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a+b+c}{1+2+3}=\dfrac{18}{6}=3\)

Do đó: a=3; b=6; c=9

Vậy: Số cần tìm là 936; 396

b: \(\Leftrightarrow\left(a^2-2\right)\left(a^2-5\right)< 0\)

\(\Rightarrow2< a^2< 5\)

\(\Leftrightarrow a^2=4\)

hay \(a\in\left\{2;-2\right\}\)

 

Bình luận (0)
DF
Xem chi tiết
LA
Xem chi tiết
H24
10 tháng 12 2018 lúc 0:05

Từ gt \(\Rightarrow ab-ac-bc+c^2=c^2\)

        \(\Leftrightarrow ab=ac+bc\)

       \(\Leftrightarrow ab=c\left(a+b\right)\)

       \(\Leftrightarrow abc=c^2\left(a+b\right)\)

Bây giờ chỉ cần chứng minh ( a + b ) là số chính phương nx là xog !

Gọi \(ƯCLN\left(a-c;b-c\right)=d\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}a-c⋮d\\b-c⋮d\end{cases}\Rightarrow}\left(a-c\right)-\left(b-c\right)⋮d\)

                            \(\Rightarrow a-b⋮d\)

Mà \(\left(a;b\right)=1\)

\(\Rightarrow d=1\)

Hay \(\left(a-c;b-c\right)=1\)

Mà \(\left(a-c\right)\left(b-c\right)=c^2\)là số chính phường

Nên a - c và b - c đều là số chính phương

Đặt \(\hept{\begin{cases}a-c=x^2\\b-c=y^2\end{cases}\left(x;y\inℕ\right)}\)

\(\Rightarrow x^2.y^2=\left(a-c\right)\left(b-c\right)\)

\(\Leftrightarrow x^2y^2=c^2\)

\(\Leftrightarrow xy=c\)( Do xy và c đều dương )

Ta có : \(\left(a-c\right)+\left(b-c\right)=x^2+y^2\)

\(\Leftrightarrow a+b-2c=x^2+y^2\)

\(\Leftrightarrow a+b=x^2+2c+y^2\)

\(\Leftrightarrow a+b=x^2+2xy+y^2\)

\(\Leftrightarrow a+b=\left(x+y\right)^2\)là số chính phương

Do đó : \(abc=c^2.\left(x+y\right)^2=\left(cx+cy\right)^2\)là số chính phương

Vậy .................

Bình luận (0)
BT
Xem chi tiết
MC
Xem chi tiết
PJ
20 tháng 1 2020 lúc 20:03

3b2+3a2-7a-7b+4=0

=>a(3a-7)+b(3b-7)=0

Bình luận (0)
 Khách vãng lai đã xóa
AN
21 tháng 1 2020 lúc 8:44

Ta có: 

12(3a2 + 3b2 - 7a - 7b + 4) = 0

<=> (6a - 7)2 + (6b - 7)2 = 50

<=> (6a - 7, 6b - 7) = (1, 49; 49, 1; 25, 25)

Bình luận (0)
 Khách vãng lai đã xóa
AN
21 tháng 1 2020 lúc 8:51

Cách 2: dễ dàng thấy a, b ≥ 0

Ta có: 

Xét a, b ≥ 3

=> 3(a2 + b2) - 7(a + b) + 4 ≥ 9(a + b) - 7(a + b) + 4

= 2(a + b) + 4 > 0

Xét 0 ≤ a ≤ 2; 0 ≤ b tìm được a, b.

Bình luận (0)
 Khách vãng lai đã xóa
PR
Xem chi tiết
HT
Xem chi tiết
NL
15 tháng 3 2022 lúc 17:05

Hiển nhiên \(c\left(c+1\right)>a\left(a+1\right)\Rightarrow c>a\ge b\)

Nếu \(c\ge2a\Rightarrow c\left(c+1\right)\ge2a\left(2a+1\right)=4a^2+2a\)

Mà \(a\left(a+1\right)+b\left(b-1\right)\le a\left(a+1\right)+a\left(a-1\right)=2a^2\)

\(\Rightarrow2a^2\ge4a^2+2a\Rightarrow2a^2+2a\le0\) (vô lý)

\(\Rightarrow c< 2a\)

Ta có:

\(4a\left(a+1\right)+4b\left(b-1\right)+1=4c\left(c+1\right)+1\)

\(\Leftrightarrow4a\left(a+1\right)+\left(2b-1\right)^2=\left(2c+1\right)^2\)

\(\Leftrightarrow4a\left(a+1\right)=\left(2c+1\right)^2-\left(2b-1\right)^2\)

\(\Leftrightarrow a\left(a+1\right)=\left(c-b+1\right)\left(c+b\right)\) (*)

Nếu \(c-b+1\ge a\Rightarrow\left(c-b+1\right)\left(c+b\right)>a\left(a+b\right)>a\left(a+1\right)\) (ktm)

\(\Rightarrow c-b+1< a\) \(\Rightarrow c-b+1\) ko có ước nguyên tố nào là a

\(\Rightarrow c+b⋮a\Rightarrow\dfrac{c+b}{a}\in Z\) (1)

Theo chứng minh ban đầu, ta có \(b\le a< c< 2a\)

\(\Rightarrow a< c+b< 2a+a=3a\Rightarrow1< \dfrac{c+b}{a}< 3\) (2)

(1);(2) \(\Rightarrow\dfrac{c+b}{a}=2\Rightarrow c+b=2a\)

Thế vào (*) \(\Rightarrow a+1=2\left(c-b+1\right)\Rightarrow2c-2b+1=a\)

\(\Rightarrow2\left(2a-b\right)-2b+1=a\Rightarrow3a-4b+1=0\)

\(\Rightarrow3\left(a-1\right)=4\left(b-1\right)\)

\(\Rightarrow b-1⋮3\Rightarrow b-1=3k\Rightarrow b=3k+1\)

\(\Rightarrow a=4k+1\)

\(\Rightarrow c=2a-b=5k+1\)

\(\Rightarrow A=3\left(5k+1\right)-5\left(3k+1\right)=-2\)

Bình luận (0)
DA
Xem chi tiết