HT

Cho 2 số  nguyên tố a,b\(\left(a\ge b\right)\) và số nguyên dương c thỏa mãn a(a+1)+b(b-1)=c(c+1)

Tính giá trị biểu thức A=3c-5b

NL
15 tháng 3 2022 lúc 17:05

Hiển nhiên \(c\left(c+1\right)>a\left(a+1\right)\Rightarrow c>a\ge b\)

Nếu \(c\ge2a\Rightarrow c\left(c+1\right)\ge2a\left(2a+1\right)=4a^2+2a\)

Mà \(a\left(a+1\right)+b\left(b-1\right)\le a\left(a+1\right)+a\left(a-1\right)=2a^2\)

\(\Rightarrow2a^2\ge4a^2+2a\Rightarrow2a^2+2a\le0\) (vô lý)

\(\Rightarrow c< 2a\)

Ta có:

\(4a\left(a+1\right)+4b\left(b-1\right)+1=4c\left(c+1\right)+1\)

\(\Leftrightarrow4a\left(a+1\right)+\left(2b-1\right)^2=\left(2c+1\right)^2\)

\(\Leftrightarrow4a\left(a+1\right)=\left(2c+1\right)^2-\left(2b-1\right)^2\)

\(\Leftrightarrow a\left(a+1\right)=\left(c-b+1\right)\left(c+b\right)\) (*)

Nếu \(c-b+1\ge a\Rightarrow\left(c-b+1\right)\left(c+b\right)>a\left(a+b\right)>a\left(a+1\right)\) (ktm)

\(\Rightarrow c-b+1< a\) \(\Rightarrow c-b+1\) ko có ước nguyên tố nào là a

\(\Rightarrow c+b⋮a\Rightarrow\dfrac{c+b}{a}\in Z\) (1)

Theo chứng minh ban đầu, ta có \(b\le a< c< 2a\)

\(\Rightarrow a< c+b< 2a+a=3a\Rightarrow1< \dfrac{c+b}{a}< 3\) (2)

(1);(2) \(\Rightarrow\dfrac{c+b}{a}=2\Rightarrow c+b=2a\)

Thế vào (*) \(\Rightarrow a+1=2\left(c-b+1\right)\Rightarrow2c-2b+1=a\)

\(\Rightarrow2\left(2a-b\right)-2b+1=a\Rightarrow3a-4b+1=0\)

\(\Rightarrow3\left(a-1\right)=4\left(b-1\right)\)

\(\Rightarrow b-1⋮3\Rightarrow b-1=3k\Rightarrow b=3k+1\)

\(\Rightarrow a=4k+1\)

\(\Rightarrow c=2a-b=5k+1\)

\(\Rightarrow A=3\left(5k+1\right)-5\left(3k+1\right)=-2\)

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
LC
Xem chi tiết
H24
Xem chi tiết
LC
Xem chi tiết
DL
Xem chi tiết
NA
Xem chi tiết
NT
Xem chi tiết
FT
Xem chi tiết
MH
Xem chi tiết