Những câu hỏi liên quan
SK
Xem chi tiết
NH
23 tháng 5 2017 lúc 9:32

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 1 2018 lúc 11:52

Để tìm trên (C) các điểm có tọa độ nguyên ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Điều kiện cần và đủ để M(x, y) ∈ (C) có tọa độ nguyên là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

tức (x – 2) là ước của 9.

Khi đó, x – 2 nhận các giá trị -1; 1; -3; 3; -9; 9 hay x nhận các giá trị 1; 3; -1; 5; -7; 11.

Do đó, ta có 6 điểm trên (C) có tọa độ nguyên là: (1;-6), (3;12), (-1;0), (5;6), (-7;2), (11;4).

Bình luận (0)
QL
Xem chi tiết
HM
23 tháng 9 2023 lúc 11:23

a)

+) Thay tọa độ \(\left( { - 1; - 2} \right)\) vào hàm số \(y =  - 2{x^2}\) ta được:

\( - 2 =  - 2.{\left( { - 1} \right)^2}\)(Đúng)

=> \(\left( { - 1; - 2} \right)\) thuộc đồ thị hàm số \(y =  - 2{x^2}\).

+) Thay tọa độ \(\left( {0;0} \right)\) vào hàm số \(y =  - 2{x^2}\) ta được:

\(0 =  - {2.0^2}\)(Đúng)

=> \(\left( {0;0} \right)\) thuộc đồ thị hàm số \(y =  - 2{x^2}\).

+) Thay tọa độ \(\left( {0;1} \right)\) vào hàm số \(y =  - 2{x^2}\) ta được:

\(1 =  - {2.0^2} \Leftrightarrow 1 = 0\)(Vô lí)

=> \(\left( {0;1} \right)\) không thuộc đồ thị hàm số \(y =  - 2{x^2}\).

+) Thay tọa độ \(\left( {2021;1} \right)\) vào hàm số \(y =  - 2{x^2}\) ta được:

\(1 =  - {2.2021^2}\)(Vô lí)

=> \(\left( {2021;1} \right)\) không thuộc đồ thị hàm số \(y =  - 2{x^2}\).

b)

+) Thay \(x =  - 2\) vào hàm số \(y =  - 2{x^2}\) ta được:

\(y =  - 2.{\left( { - 2} \right)^2} =  - 8\)

+) Thay \(x = 3\) vào hàm số \(y =  - 2{x^2}\) ta được:

\(y =  - {2.3^2} =  - 18\)

+) Thay \(x = 10\) vào hàm số \(y =  - 2{x^2}\) ta được:

\(y =  - 2.{\left( {10} \right)^2} =  - 200\)

c) Thay \(y =  - 18\) vào hàm số \(y =  - 2{x^2}\) ta được:

\( - 18 =  - 2{x^2} \Leftrightarrow {x^2} = 9 \Leftrightarrow x =  \pm 3\)

Vậy các điểm có tọa độ (3;-18) và (-3;-18) thuộc đồ thị hàm số có tung độ bằng -18.

Bình luận (0)
PA
Xem chi tiết
TV
29 tháng 4 2016 lúc 12:50

a) Ta có : \(y'=3x^2+2\left(m-1\right)x+m\left(m-3\right)\)

Hàm số (1) có cực đại và cực tiểu nằm 2 phía đối với trục tung <=> phương trình : \(3x^2+2\left(m-1\right)x+m\left(m-3\right)=0\) có 2 nghiệm phân biệt trái dấu

\(\Leftrightarrow P< 0\Leftrightarrow m\left(m-3\right)< 0\Leftrightarrow0< m< 3\)

Vậy \(0< m< 3\) là giá trị cần tìm

b) Khi m = 1 ta có : \(y=x^3-2x\)

Gọi \(M\left(a;a^3-2a\right)\in\left(C\right),a\ne0\)

Ta có \(y'=3x^2-2\) nên hệ số góc của \(\Delta\) là \(y'\left(a\right)=3a^2-2\)

Ta có \(\overrightarrow{OM}\left(a;a^3-2a\right)\) nên hệ số góc đường thẳng OM là \(k=a^2-2\)

Do đó : \(\Delta\perp OM\Leftrightarrow y'_a.k=-1\)

                           \(\Leftrightarrow\left(3a^2-2\right)\left(a^2-2\right)=-1\Leftrightarrow3a^4-8a^2+5=0\)

                \(M_1\left(1;-1\right);M_1\left(-1;1\right);M_3\left(-\frac{\sqrt{15}}{3};\frac{\sqrt{15}}{9}\right);M_4\left(\frac{\sqrt{15}}{3};-\frac{\sqrt{15}}{9}\right)\)          \(\Leftrightarrow\left[\begin{array}{nghiempt}a^2=1\\a^2=\frac{5}{3}\end{array}\right.\)  \(\Leftrightarrow\left[\begin{array}{nghiempt}a=\pm1\\a=\pm\frac{\sqrt{5}}{3}\end{array}\right.\)(Thỏa mãn)

Suy ra có 4 điểm thỏa mãn đề bài :\(M_1\left(1;-1\right);M_2\left(-1;1\right);M_3\left(-\frac{\sqrt{15}}{3};\frac{\sqrt{15}}{9}\right);M_4\left(\frac{\sqrt{15}}{3};-\frac{\sqrt{15}}{9}\right)\)

 

Bình luận (0)
LL
Xem chi tiết
NT
Xem chi tiết
NT
5 tháng 2 2022 lúc 1:33

a: ĐKXĐ: \(\left\{{}\begin{matrix}-2< =x< =2\\x< >0\end{matrix}\right.\)

c: \(f\left(-x\right)=\dfrac{\sqrt{2-\left(-x\right)}-\sqrt{2+\left(-x\right)}}{-x}=\dfrac{\sqrt{2+x}-\sqrt{2-x}}{-x}=\dfrac{\sqrt{2-x}-\sqrt{2+x}}{x}=f\left(x\right)\)

Bình luận (0)
QL
Xem chi tiết
KT
12 tháng 9 2023 lúc 23:22

a)

- Với \(x =  - 2 \Rightarrow f\left( { - 2} \right) =  - 2;g\left( { - 2} \right) =  - 2 + 3 = 1\);

- Với \(x =  - 1 \Rightarrow f\left( { - 1} \right) =  - 1;g\left( { - 1} \right) =  - 1 + 3 = 2\);

- Với \(x = 0 \Rightarrow f\left( 0 \right) = 0;g\left( 0 \right) = 0 + 3 = 3\);

- Với \(x = 1 \Rightarrow f\left( 1 \right) = 1;g\left( 1 \right) = 1 + 3 = 4\);

- Với \(x = 2 \Rightarrow f\left( 2 \right) = 2;g\left( 2 \right) = 2 + 3 = 5\); 

Ta có bảng sau:

\(x\)

–2

–1

0

1

2

\(y = f\left( x \right) = x\)

–2

–1

0

1

2

\(y = g\left( x \right) = x + 3\)

1

2

3

4

5

b)

- Vẽ đồ thị hàm số \(y = f\left( x \right) = x\)

Cho \(x = 1 \Rightarrow y = f\left( x \right) = 1\). Ta vẽ điểm \(A\left( {1;1} \right)\)

Đồ thị hàm số \(y = x\) là đường thẳng đi qua điểm \(O\left( {0;0} \right)\) và \(A\left( {1;1} \right)\).

- Các điểm có tọa độ thỏa mãn hàm số \(y = g\left( x \right)\) trong bảng trên là \(B\left( { - 2;1} \right);C\left( { - 1;2} \right);D\left( {0;3} \right);E\left( {1;4} \right);F\left( {2;5} \right)\).

c) Ta đặt thước thẳng kiểm tra thì thấy các điểm thuộc đồ thị hàm số \(y = g\left( x \right) = x = 3\) thẳng hàng với nhau.

Dự đoán cách vẽ đồ thị hàm số \(y = g\left( x \right)\):

Bước 1: Chọn hai điểm \(A;B\) phân biệt thuộc đồ thị hàm số \(y = g\left( x \right)\).

Bước 2: Vẽ đường thẳng đi qua hai điểm \(A;B\).

Đồ thị hàm số \(y = g\left( x \right)\) là đường thẳng đi qua hai điểm \(A;B\).

Bình luận (0)
TC
Xem chi tiết
NL
Xem chi tiết