Bài 5b: Tiếp tuyến của đồ thị hàm số

PA

Cho hàm số \(y=x^3+\left(m-1\right)x^2+m\left(m-3\right)x\left(1\right)\) với  m là tham số 

a) Tìm m để đồ thị hàm số (1) có cực đại và cực tiểu nằm hai phía đối với trục tung

b) Khi m = 1 hàm số (1) có đồ thị là (C). Tìm tọa độ các điểm M (khác gốc tọa độ O) trên (C) sao cho tiếp tuyến  \(\Delta\) của (C) tại M vuông góc với đường thẳng OM

TV
29 tháng 4 2016 lúc 12:50

a) Ta có : \(y'=3x^2+2\left(m-1\right)x+m\left(m-3\right)\)

Hàm số (1) có cực đại và cực tiểu nằm 2 phía đối với trục tung <=> phương trình : \(3x^2+2\left(m-1\right)x+m\left(m-3\right)=0\) có 2 nghiệm phân biệt trái dấu

\(\Leftrightarrow P< 0\Leftrightarrow m\left(m-3\right)< 0\Leftrightarrow0< m< 3\)

Vậy \(0< m< 3\) là giá trị cần tìm

b) Khi m = 1 ta có : \(y=x^3-2x\)

Gọi \(M\left(a;a^3-2a\right)\in\left(C\right),a\ne0\)

Ta có \(y'=3x^2-2\) nên hệ số góc của \(\Delta\) là \(y'\left(a\right)=3a^2-2\)

Ta có \(\overrightarrow{OM}\left(a;a^3-2a\right)\) nên hệ số góc đường thẳng OM là \(k=a^2-2\)

Do đó : \(\Delta\perp OM\Leftrightarrow y'_a.k=-1\)

                           \(\Leftrightarrow\left(3a^2-2\right)\left(a^2-2\right)=-1\Leftrightarrow3a^4-8a^2+5=0\)

                \(M_1\left(1;-1\right);M_1\left(-1;1\right);M_3\left(-\frac{\sqrt{15}}{3};\frac{\sqrt{15}}{9}\right);M_4\left(\frac{\sqrt{15}}{3};-\frac{\sqrt{15}}{9}\right)\)          \(\Leftrightarrow\left[\begin{array}{nghiempt}a^2=1\\a^2=\frac{5}{3}\end{array}\right.\)  \(\Leftrightarrow\left[\begin{array}{nghiempt}a=\pm1\\a=\pm\frac{\sqrt{5}}{3}\end{array}\right.\)(Thỏa mãn)

Suy ra có 4 điểm thỏa mãn đề bài :\(M_1\left(1;-1\right);M_2\left(-1;1\right);M_3\left(-\frac{\sqrt{15}}{3};\frac{\sqrt{15}}{9}\right);M_4\left(\frac{\sqrt{15}}{3};-\frac{\sqrt{15}}{9}\right)\)

 

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
NA
Xem chi tiết
PT
Xem chi tiết
NN
Xem chi tiết
NK
Xem chi tiết
NN
Xem chi tiết
LD
Xem chi tiết
NA
Xem chi tiết
NN
Xem chi tiết