Những câu hỏi liên quan
CV
Xem chi tiết
DD
Xem chi tiết
KL
26 tháng 7 2021 lúc 19:17

Gọi giá ban đầu của đôi giày nếu không khuyến mãi là x(vnđ)

Giá tiền được giảm là: 65%x(vnđ)

Theo đề bài ra ta có: 

x-65%x=1 520 000

<=>35%x=1 520 000

<=> x=4 342 857,143

x=4 342 857,143

Vậy giá tiền ban đầu của chiếc giày là 4 342 857,143

Bình luận (0)
DD
Xem chi tiết
VD
Xem chi tiết
VN
24 tháng 9 2021 lúc 15:24

bạn hỏi quanda ấy 

Bình luận (0)
 Khách vãng lai đã xóa
NT
24 tháng 9 2021 lúc 15:25

aor ma panda

Bình luận (0)
 Khách vãng lai đã xóa
H24

Tra trên google hoặc hỏi Quanda đi

Bình luận (0)
 Khách vãng lai đã xóa
DD
Xem chi tiết
NT
Xem chi tiết
NM
22 tháng 9 2021 lúc 15:04

\(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\\ A=\sqrt{8-2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)\left(4+\sqrt{15}\right)\\ A=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\left(4+\sqrt{15}\right)\\ A=\left(\sqrt{5}-\sqrt{3}\right)^2\left(4+\sqrt{15}\right)\\ A=\left(8-2\sqrt{15}\right)\left(4+\sqrt{15}\right)\\ A=2\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)=2\left[4^2-\left(\sqrt{15}\right)^2\right]=2\cdot1=2\)

Bình luận (0)
NT
22 tháng 9 2021 lúc 15:09

\(A=\sqrt{4-\sqrt{15}}\cdot\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\)

\(=\left(8-2\sqrt{15}\right)\left(4+\sqrt{15}\right)\)

\(=2>\sqrt{3}\)

Bình luận (0)
NU
22 tháng 9 2021 lúc 15:13

xét vế trái ta có

\(A=\sqrt{4-\sqrt{15}}.\sqrt{4+\sqrt{15}}.\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\)

A=\(\sqrt{4^2-\sqrt{15}^2}.\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\)

A=\(\sqrt{4+\sqrt{15}}.\sqrt{\sqrt{10}-\sqrt{6}}.\sqrt{10-\sqrt{6}}\)

A=\(\sqrt{\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)}.\sqrt{\sqrt{10}-\sqrt{6}}\)

A=\(\sqrt{4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}}.\sqrt{\sqrt{10}-\sqrt{6}}\)

A=\(\sqrt{4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}}.\sqrt{\sqrt{10}-\sqrt{6}}\)

A=\(\sqrt{\sqrt{10}+\sqrt{6}}.\sqrt{\sqrt{10}-\sqrt{6}}\)

A=\(\sqrt{\sqrt{10}^2-\sqrt{6}^2}=\sqrt{4}\)

mà:\(\sqrt{4}>\sqrt{3}\) nên A\(>\sqrt{3}\)

Bình luận (0)
PB
Xem chi tiết
LH
5 tháng 7 2021 lúc 16:54

Đk:\(y^2-2x-5y+6\ge0\)

Pt (1)\(\Leftrightarrow\left(x^2-1\right)-\left(xy-y\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-y\left(x-1\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=x+2\end{matrix}\right.\)

TH1: Thay x=1 vào pt (2) ta đc: \(3\sqrt{y^2-5y+4}=y+9\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+9\ge0\\9\left(x^2-5y+4\right)=y^2+18y+81\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y\ge-9\\8y^2-63y-45=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{63+3\sqrt{601}}{16}\\y=\dfrac{63-3\sqrt{601}}{16}\end{matrix}\right.\) (tm)

TH2: Thay y=x+2 vào pt (2) ta đc:

\(\left(x-1\right)^2+3\sqrt{\left(x+2\right)^2-2x-5\left(x+2\right)+6}=x+2+9\)

\(\Leftrightarrow x^2-3x-10+3\sqrt{x^2-3x}=0\)

Đặt \(t=\sqrt{x^2-3x}\left(t\ge0\right)\)

Pttt: \(t^2-10+3t=0\)\(\Leftrightarrow\left[{}\begin{matrix}t=2\left(tm\right)\\t=-5\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow2=\sqrt{x^2-3x}\)\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=6\\y=1\end{matrix}\right.\) (tm)

Vậy \(\left(x;y\right)=\text{​​}\left\{\left(1;\dfrac{63+3\sqrt{601}}{16}\right);\left(1;\dfrac{63-3\sqrt{601}}{16}\right),\left(4;6\right),\left(-1;1\right)\right\}\)

Bình luận (0)
NL
5 tháng 7 2021 lúc 16:59

Xét pt đầu:

\(\left(x^2+x-2\right)-y\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)-y\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=x+2\end{matrix}\right.\)

- Với \(x=1\) thay xuống pt dưới:

\(3\sqrt{y^2-5y+4}=y+9\) \(\left(y\ge-9\right)\)

\(\Leftrightarrow9\left(y^2-5y+4\right)=y^2+18y+81\)

\(\Leftrightarrow8y^2-63y-45=0\)

\(\Rightarrow y=\dfrac{63\pm3\sqrt{601}}{16}\) (thỏa mãn)

- Với \(y=x+2\) thay xuống pt dưới:

\(\left(x-1\right)^2+3\sqrt{x^2-3x}=x+11\) (ĐKXĐ: ....)

\(\Leftrightarrow x^2-3x+3\sqrt{x^2-3x}-10=0\)

Đặt \(\sqrt{x^2-3x}=t\ge0\)

\(\Rightarrow t^2+3t-10=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-5\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-3x}=2\Leftrightarrow x^2-3x-4=0\)

\(\Leftrightarrow...\)

Bình luận (0)
ND
Xem chi tiết
H24
Xem chi tiết
NU
17 tháng 9 2021 lúc 21:12

1.\(sin^2\alpha+cos^2\alpha=\left(\dfrac{AC}{BC}\right)^2+\left(\dfrac{AB}{BC}\right)^2\)

=\(\dfrac{AC^2+AB^2}{BC^2}=\dfrac{BC^2\left(pytago\right)}{BC^2}=1\)

2.ta có \(tan\alpha=\dfrac{AC}{AB}\)

\(\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{AC}{BC}}{\dfrac{AB}{BC}}=\dfrac{AC}{AB}\)

\(\Rightarrow tan\alpha=\dfrac{sin\alpha}{cos\alpha}\)

3.ta có:\(1+tan^2\alpha=1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2\)

=\(\dfrac{sin^2\alpha+cos^2\alpha}{cos^2\alpha}\)=\(\dfrac{1}{cos^2\alpha}\)

4.ta có :\(cot\alpha=\dfrac{AB}{AC}\)

\(\dfrac{cos\alpha}{sin\alpha}=\dfrac{\dfrac{AB}{BC}}{\dfrac{AC}{BC}}=\dfrac{AB}{AC}\)

\(\Rightarrow cot\alpha=\dfrac{cos\alpha}{sin\alpha}\)

\(1+cot^2\alpha=1+\left(\dfrac{cos\alpha}{sin\alpha}\right)^2=\dfrac{sin^2\alpha+cos^2\alpha}{sin^2\alpha}\)=\(\dfrac{1}{sin^2a}\)

 

Bình luận (0)