Những câu hỏi liên quan
RC
Xem chi tiết
NA
16 tháng 10 2017 lúc 20:57

333444=(111*3)444=111444*3444=111444*34*111=111444*81111

444333=(111*4)333=111333*4333=111333*43*111=111333*64111

Mả 111444>111333 ; 81111>64111 suy ra 333444>444333

Bình luận (0)
TH
16 tháng 10 2017 lúc 20:39

333444>444333

Bình luận (0)
DD
16 tháng 10 2017 lúc 20:40

333444 =( 333)111

444333 = ( 4443 )111

Theo mình nghĩ thì 333444 > 444333 vì 333> 4443 

Bình luận (0)
PM
Xem chi tiết
H24
6 tháng 10 2016 lúc 19:04

bn có lúc nào

gũi lời đâu mà

k làm chi

lúc bn mình

k bn rùi

bn toàn nói

là chưa k

Bình luận (0)
H24
6 tháng 10 2016 lúc 19:04

\(333^{444}>444^{333}\)

chuc bn hoc gioi!

nhae

~~~~~~~~~

~~~~~~~~~~~

Bình luận (0)
VH
6 tháng 10 2016 lúc 19:07

/(1^{64})

Bình luận (0)
NH
Xem chi tiết
NT
6 tháng 11 2021 lúc 22:21

a: \(5^{300}=25^{150}\)

\(3^{450}=27^{150}\)

mà 25<27

nên \(5^{300}< 3^{450}\)

Bình luận (0)
MS
6 tháng 11 2021 lúc 22:29
 

a: 5300=251505300=25150

3450=271503450=27150

mà 25<27

nên 5300<3450

Bình luận (0)
ZZ
Xem chi tiết
HV
Xem chi tiết
NH
Xem chi tiết
KR
6 tháng 10 2023 lúc 11:35

`#3107.101107`

a)

`64^150` và `4^450`

Ta có:

`64^150 = (4^3)^150 = 4^(3*150) = 4^450`

Vì `450 = 450 => 4^450 = 4^450 => 64^150 = 4^450`

Vậy, `64^150 = 4^450`

b)

`81^64` và `27^100`

Ta có:

`81^64 = (3^4)^64 = 3^(4*64) = 3^256`

`27^100 = (3^3)^100 = 3^(3*100) = 3^300`

Vì `256 < 300 => 3^256 < 3^300 => 81^64 < 27^100`

Vậy, `81^64 < 27^100`

c)

`125^1000` và `25^3000`

Ta có:

`125^1000 = (5^3)^1000 = 5^(3*1000) = 5^3000`

Vì `5 < 25 => 5^3000 < 25^3000 => 125^1000 < 25^3000`

Vậy, `125^1000 < 25^3000`

d)

`4^30` và `3^40`

Ta có:

`4^30 = 4^(3*10) = (4^3)^10 = 64^10`

`3^40 = 3^(4*10) = (3^4)^10 = 81^10`

Vì `64 < 81 => 64^10 < 81^10 => 4^30 < 3^40`

Vậy, `4^30 < 3^40`

m)

`2^5000` và `5^2000`

Ta có:

`2^5000 = 2^(5*1000) = (2^5)^1000 = 32^1000`

`5^2000 = 5^(2*1000) = (5^2)^1000 = 25^1000`

Vì `32 > 25 => 32^1000 > 25^1000 => 2^5000 > 5^2000`

Vậy, `2^5000 > 5^2000`

h)

`6^450` và `3^750`

Ta có:

`6^450 = 6^(150*3) = (6^3)^150 = 216^150`

`3^750 = 3^(150*5) = (3^5)^150 = 243^150`

Vì `216 < 243 => 216^150 < 243^150 => 6^450 < 3^750`

Vậy, `6^450 < 3^750`

0)

`333^444` và `444^333`

Ta có:

`333^444 = 333^(4*111) = (333^4)^111 = (3^4 *111^4)^111 = 81^111 * 111^444`

`444^333 = 444^(3*111) = (444^3)^111 = (4^3 * 111^3)^111 = 64^111 * 111^333`

Vì `81 > 64;` `111^444 > 111^333`

`=> 81^111 * 111^444 > 64^111 * 111^333`

Vậy, `333^444 > 444^333.`

Bình luận (1)
H9
6 tháng 10 2023 lúc 11:34

a) Ta có:

\(64^{150}=\left(2^6\right)^{150}=2^{900}\)

\(4^{450}=\left(2^2\right)^{450}=2^{900}\)

Mà: \(2^{900}=2^{900}\Rightarrow64^{150}=4^{450}\)

b) Ta có:

\(81^{64}=\left(3^4\right)^{64}=3^{256}\)

\(27^{100}=\left(3^3\right)^{100}=3^{300}\)

Mà: \(3^{300}>3^{256}\Rightarrow27^{100}>81^{64}\)

c) Ta có: 

\(125^{1000}=\left(5^3\right)^{1000}=5^{3000}\)

Mà: \(25^{3000}>5^{3000}\Rightarrow25^{3000}>125^{1000}\)

d) Ta có:

\(4^{30}=\left(4^3\right)^{10}=64^{10}\)

\(3^{40}=\left(3^4\right)^{10}=81^{10}\)

Mà: \(81^{10}>64^{10}\Rightarrow3^{40}>4^{30}\)

m) Ta có:

\(2^{5000}=\left(2^5\right)^{1000}=32^{1000}\)

\(5^{2000}=\left(5^2\right)^{1000}=25^{1000}\)

Mà: \(25^{1000}< 32^{1000}\Rightarrow2^{5000}>5^{2000}\)

h) Ta có:

\(6^{450}=\left(6^3\right)^{150}=216^{150}\)

\(3^{750}=\left(3^5\right)^{150}=243^{150}\)

Mà: \(243^{150}>216^{150}\Rightarrow3^{750}>6^{450}\)

.... 

Bình luận (1)
KL
6 tháng 10 2023 lúc 11:39

a) 4⁴⁵⁰ = (4³)¹⁵⁰ = 64¹⁵⁰

b) 81⁶⁴ = (3⁴)⁶⁴ = 3²⁵⁶

27¹⁰⁰ = (3³)¹⁰⁰ = 3³⁰⁰

Do 256 < 300 nên 3²⁵⁶ < 3³⁰⁰

Vậy 81⁶⁴ < 27¹⁰⁰

c) 125¹⁰⁰⁰ = (5³)¹⁰⁰⁰ = 5³⁰⁰⁰

Do 5 < 25 nên 5³⁰⁰⁰ < 25³⁰⁰⁰

Vậy 125¹⁰⁰⁰ < 25³⁰⁰⁰

d) 4³⁰ = (4³)¹⁰ = 64¹⁰

3⁴⁰ = (3⁴)¹⁰ = 81¹⁰

Do 64 < 81 nên 64¹⁰ < 81¹⁰

Vậy 4³⁰ < 3⁴⁰

m) 2⁵⁰⁰⁰ = (2⁵)¹⁰⁰⁰ = 32¹⁰⁰⁰

5²⁰⁰⁰ = (5²)¹⁰⁰⁰ = 25¹⁰⁰⁰

Do 32 > 25 nên 32¹⁰⁰⁰ > 25¹⁰⁰⁰

Vậy 2⁵⁰⁰⁰ > 5²⁰⁰⁰

h) 6⁴⁵⁰ = (6³)¹⁵⁰ = 216¹⁵⁰

3⁷⁵⁰ = (3⁵)¹⁵⁰ = 243¹⁵⁰

Do 216 < 243 nên 216¹⁵⁰ < 243¹⁵⁰

Vậy 6⁴⁵⁰ < 3⁷⁵⁰

o) 333⁴⁴⁴ = (333⁴)¹¹¹ = [(3.111)⁴]¹¹¹ = (3⁴.111⁴)¹¹¹ = (81.111⁴)¹¹¹

444³³³ = (444³)¹¹¹ = [(4.111)³]¹¹¹

= (4³.111³)¹¹¹ = (64.111³)¹¹¹

Do 81 > 64 ⇒ 81.111⁴ > 64.111⁴ (1)

Do 4 > 3 ⇒ 64.111⁴ > 64.111³ (2)

Từ (1) và (2) ⇒ 81.111⁴ > 64.111³

⇒ (81.111⁴)¹¹¹ > (64.111³)¹¹¹

Vậy 333⁴⁴⁴ > 444³³³

Bình luận (1)
LT
Xem chi tiết
NT
24 tháng 10 2015 lúc 12:25

 Ta có: 333^444= 111^444 x 3^444 
444^333 = 111^333 x 4^333 
Tách: 3^444 = (3^4)^111 =81^111 <=>4^333 = (4^3)^111 = 64^111 
Mà: {111^444 > 111^333 (1) 
{81^111 > 64^111 hay: (3^4)^111 > (4^3)^111 (2) 
Từ (1) và (2) ta có:333^444 > 444^333 

tick cái bạn

Bình luận (0)
PQ
24 tháng 10 2015 lúc 12:23

a,444^333>333^444

b3^486>4^363

c,5^217<123^72

d,31^11>17^14

Bình luận (0)
KT
Xem chi tiết
DT
18 tháng 9 2016 lúc 19:13

A)19991999.1998

=1999x10001.1998

19981998.1999

=1998x10001.1999

Vậy hai biểu thức trên bằng nhau.

Bình luận (0)
KT
18 tháng 9 2016 lúc 19:16

thanks bạn!!! làm tiếp đi bạn

Bình luận (0)
KT
18 tháng 9 2016 lúc 19:18

câu C mk chưa viết nên giải hộ mk luôn nhé!!!

C)3^500 và 7^300

thanks mấy bạn nhiều

Bình luận (0)
H24
Xem chi tiết
LH
27 tháng 9 2019 lúc 18:01

So sánh à bạn?

a) 

Ta có:   \(A=2009.2011\)                                                                  \(\)

           \(A=2009.\left(2010+1\right)\)                                                    

           \(A=2009.2010+2009\left(1\right)\)

          \(B=2010^2\)

           \(B=2010.2010\)

           \(B=2010\left(2009+1\right)\)

          \(B=2009.2010+2010\left(2\right)\)

Từ (1) và (2) => \(A< B\)

b)\(A=333^{444}\)

\(A=\left(3.111\right)^{4.111}\)

\(A=\left(3^4.111^4\right)^{111}\)

\(A=\left(81.111^4\right)^{111}\)

\(B=444^{333}\)

\(B=\left(4.111\right)^{3.111}\)

\(B=\left(4^3.111^3\right)^{111}\)

\(B=\left(64.111^3\right)^{111}\)

=>\(A>B\)

Bình luận (0)