NH

so sánh mà ko tính giá trị

a) 64 mũ 150 và 4 mũ 450

b) 81 mũ 64 và 27 mũ 100

c) 125 mũ 1000 và 25 mũ 3000

d) 4 mũ 30 và 3 mũ 40 

m) 2 mũ 5000 và 5 mũ 2000

h) 6 mũ 450 và 3 mũ 750 

0) 333 mũ 444 và 444 mũ 333

KR
6 tháng 10 2023 lúc 11:35

`#3107.101107`

a)

`64^150` và `4^450`

Ta có:

`64^150 = (4^3)^150 = 4^(3*150) = 4^450`

Vì `450 = 450 => 4^450 = 4^450 => 64^150 = 4^450`

Vậy, `64^150 = 4^450`

b)

`81^64` và `27^100`

Ta có:

`81^64 = (3^4)^64 = 3^(4*64) = 3^256`

`27^100 = (3^3)^100 = 3^(3*100) = 3^300`

Vì `256 < 300 => 3^256 < 3^300 => 81^64 < 27^100`

Vậy, `81^64 < 27^100`

c)

`125^1000` và `25^3000`

Ta có:

`125^1000 = (5^3)^1000 = 5^(3*1000) = 5^3000`

Vì `5 < 25 => 5^3000 < 25^3000 => 125^1000 < 25^3000`

Vậy, `125^1000 < 25^3000`

d)

`4^30` và `3^40`

Ta có:

`4^30 = 4^(3*10) = (4^3)^10 = 64^10`

`3^40 = 3^(4*10) = (3^4)^10 = 81^10`

Vì `64 < 81 => 64^10 < 81^10 => 4^30 < 3^40`

Vậy, `4^30 < 3^40`

m)

`2^5000` và `5^2000`

Ta có:

`2^5000 = 2^(5*1000) = (2^5)^1000 = 32^1000`

`5^2000 = 5^(2*1000) = (5^2)^1000 = 25^1000`

Vì `32 > 25 => 32^1000 > 25^1000 => 2^5000 > 5^2000`

Vậy, `2^5000 > 5^2000`

h)

`6^450` và `3^750`

Ta có:

`6^450 = 6^(150*3) = (6^3)^150 = 216^150`

`3^750 = 3^(150*5) = (3^5)^150 = 243^150`

Vì `216 < 243 => 216^150 < 243^150 => 6^450 < 3^750`

Vậy, `6^450 < 3^750`

0)

`333^444` và `444^333`

Ta có:

`333^444 = 333^(4*111) = (333^4)^111 = (3^4 *111^4)^111 = 81^111 * 111^444`

`444^333 = 444^(3*111) = (444^3)^111 = (4^3 * 111^3)^111 = 64^111 * 111^333`

Vì `81 > 64;` `111^444 > 111^333`

`=> 81^111 * 111^444 > 64^111 * 111^333`

Vậy, `333^444 > 444^333.`

Bình luận (1)
H9
6 tháng 10 2023 lúc 11:34

a) Ta có:

\(64^{150}=\left(2^6\right)^{150}=2^{900}\)

\(4^{450}=\left(2^2\right)^{450}=2^{900}\)

Mà: \(2^{900}=2^{900}\Rightarrow64^{150}=4^{450}\)

b) Ta có:

\(81^{64}=\left(3^4\right)^{64}=3^{256}\)

\(27^{100}=\left(3^3\right)^{100}=3^{300}\)

Mà: \(3^{300}>3^{256}\Rightarrow27^{100}>81^{64}\)

c) Ta có: 

\(125^{1000}=\left(5^3\right)^{1000}=5^{3000}\)

Mà: \(25^{3000}>5^{3000}\Rightarrow25^{3000}>125^{1000}\)

d) Ta có:

\(4^{30}=\left(4^3\right)^{10}=64^{10}\)

\(3^{40}=\left(3^4\right)^{10}=81^{10}\)

Mà: \(81^{10}>64^{10}\Rightarrow3^{40}>4^{30}\)

m) Ta có:

\(2^{5000}=\left(2^5\right)^{1000}=32^{1000}\)

\(5^{2000}=\left(5^2\right)^{1000}=25^{1000}\)

Mà: \(25^{1000}< 32^{1000}\Rightarrow2^{5000}>5^{2000}\)

h) Ta có:

\(6^{450}=\left(6^3\right)^{150}=216^{150}\)

\(3^{750}=\left(3^5\right)^{150}=243^{150}\)

Mà: \(243^{150}>216^{150}\Rightarrow3^{750}>6^{450}\)

.... 

Bình luận (1)
KL
6 tháng 10 2023 lúc 11:39

a) 4⁴⁵⁰ = (4³)¹⁵⁰ = 64¹⁵⁰

b) 81⁶⁴ = (3⁴)⁶⁴ = 3²⁵⁶

27¹⁰⁰ = (3³)¹⁰⁰ = 3³⁰⁰

Do 256 < 300 nên 3²⁵⁶ < 3³⁰⁰

Vậy 81⁶⁴ < 27¹⁰⁰

c) 125¹⁰⁰⁰ = (5³)¹⁰⁰⁰ = 5³⁰⁰⁰

Do 5 < 25 nên 5³⁰⁰⁰ < 25³⁰⁰⁰

Vậy 125¹⁰⁰⁰ < 25³⁰⁰⁰

d) 4³⁰ = (4³)¹⁰ = 64¹⁰

3⁴⁰ = (3⁴)¹⁰ = 81¹⁰

Do 64 < 81 nên 64¹⁰ < 81¹⁰

Vậy 4³⁰ < 3⁴⁰

m) 2⁵⁰⁰⁰ = (2⁵)¹⁰⁰⁰ = 32¹⁰⁰⁰

5²⁰⁰⁰ = (5²)¹⁰⁰⁰ = 25¹⁰⁰⁰

Do 32 > 25 nên 32¹⁰⁰⁰ > 25¹⁰⁰⁰

Vậy 2⁵⁰⁰⁰ > 5²⁰⁰⁰

h) 6⁴⁵⁰ = (6³)¹⁵⁰ = 216¹⁵⁰

3⁷⁵⁰ = (3⁵)¹⁵⁰ = 243¹⁵⁰

Do 216 < 243 nên 216¹⁵⁰ < 243¹⁵⁰

Vậy 6⁴⁵⁰ < 3⁷⁵⁰

o) 333⁴⁴⁴ = (333⁴)¹¹¹ = [(3.111)⁴]¹¹¹ = (3⁴.111⁴)¹¹¹ = (81.111⁴)¹¹¹

444³³³ = (444³)¹¹¹ = [(4.111)³]¹¹¹

= (4³.111³)¹¹¹ = (64.111³)¹¹¹

Do 81 > 64 ⇒ 81.111⁴ > 64.111⁴ (1)

Do 4 > 3 ⇒ 64.111⁴ > 64.111³ (2)

Từ (1) và (2) ⇒ 81.111⁴ > 64.111³

⇒ (81.111⁴)¹¹¹ > (64.111³)¹¹¹

Vậy 333⁴⁴⁴ > 444³³³

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
ZZ
Xem chi tiết
HV
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
CN
Xem chi tiết
BK
Xem chi tiết
DG
Xem chi tiết