Giải phương trình:
\(\sqrt{4x^2+20x+25}+\sqrt{x^2+6x+9}=10x-20\)
Bài tập:Giải các phương trình sau
1)\(\sqrt{-4^2+25}=x\)
2)\(\sqrt{x^2-10x+25}\)=2x+1
3)\(\sqrt{x^2-6x+9}+x=11\)
4)\(\sqrt{x^2-4x+3}=x-2\)
2: Giải phương trình a) 2sqrt(25(x - 3)) - 1/2 * sqrt(4x - 12) + 1/7 * sqrt(49(x - 3)) = 20 b) sqrt(x ^ 2 - 6x + 9) = 2
a: \(\Leftrightarrow2\cdot5\sqrt{x-3}-\dfrac{1}{2}\cdot2\sqrt{x-3}+\dfrac{1}{7}\cdot7\sqrt{x-3}=20\)
=>\(10\cdot\sqrt{x-3}=20\)
=>\(\sqrt{x-3}=2\)
=>x-3=4
=>x=7
b: =>|x-3|=2
=>x-3=2 hoặc x-3=-2
=>x=5 hoặcx=1
Giải phương trình: \(\sqrt{x^2+6x+9}+\sqrt{x^2+8x+16}+\sqrt{x^2+10x+25}=9x\)
=>\(\sqrt{\left(x+3\right)^2}\)+ \(\sqrt{\left(x+4\right)^2}\)+\(\sqrt{\left(x+5\right)^2}\)=9x
=> x + 3 + x + 4 + x + 5 = 9x
=> - 6x = - 12
=> x=2
Ủa sao phá đc trị tuyệt đối hay v bạn? (căn a^2 = trị tuyệt đối của a )
Vì \(\sqrt{x^2+6x+9}>0\\ \)
\(\sqrt{x^2+8x+16}>0\\ \)
\(\sqrt{x^2+10x+25}>0\\ \)
Suy ra 9x>0. Suy ra x>0 .Nha bạn!
GIẢI PHƯƠNG TRÌNH:
\(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}=8\)
Ta có: \(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}=8\)
\(\Rightarrow\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}=8\)
\(\Rightarrow x-3+x+5=8\)
\(\Rightarrow2x=6\Rightarrow x=3\)
\(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}=8\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}=8\Leftrightarrow\left|x-3\right|+\left|x+5\right|=8\) (1)
Nếu \(x< -5\) thì (1) trở thành:
\(3-x+\left(-x-5\right)=8\Leftrightarrow-2x-2=8\Leftrightarrow x=-5\) (loại)
-Nếu \(-5\le x< 3\) thì (1) trở thành:
\(3-x+x+5=8\Leftrightarrow8=8\)
-Nếu \(x>3\) thì (1) trở thành:
\(x-3+x+5=8\Leftrightarrow2x+2=8\Leftrightarrow x=3\) (thỏa mãn)
Vậy \(-5\le x\le3\)
Giải phương trình:
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}=3-4x-2x^2\)
Ta có:
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge\sqrt{9}+\sqrt{4}=5\)
\(3-4x-2x^2=5-2\left(x+1\right)^2\le5\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}3\left(x+1\right)^2=0\\5\left(x^2-1\right)^2=0\\2\left(x+1\right)^2=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
Vậy pt có nghiệm duy nhất \(x=-1\)
giải pt :
1 ) \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
2 ) \(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
a)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}=6-\left(x+1\right)^2\)
\(VT\ge6;VP\le6\Rightarrow VT=VP=6\)
Vậy pt có một nghiệm duy nhất là \(x=-1\)
b)
\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)
\(\Leftrightarrow\left|2x+5\right|+\left|x-4\right|=\left|x+9\right|\)
Lập bảng xét dấu ra nhé ~^o^~
căn (4x^2 +20x +25 ) + căn (x^2 +6x + 9 ) =10x-20
\(\Leftrightarrow\left|2x+5\right|+\left|x+3\right|=10x-20\)
Trường hợp 1: x<-3
Pt sẽ là -2x-5-x-3=10x-20
=>10x-20=-3x-8
=>13x=12
hay x=12/13(loại)
Trường hợp 2: -3<=x<5/2
Pt sẽ là x+3-2x-5=10x-20
=>10x-20=-x-2
=>11x=18
hay x=18/11(nhận)
Trường hợp 3: x>=-5/2
Pt sẽ là 2x+5+x+3=10x-20
=>10x-20=3x+8
=>7x=28
hay x=4(nhận)
GIẢI PHƯƠNG TRÌNH:
a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
b)\(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
c)\(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=1+\sqrt{3}\)
d)\(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
a) giải pt ra ta được : x=-1
b) giải pt ra ta được : x=2
c)giải pt ra ta được : x vô ngiệm
d)giải pt ra ta được : x=vô ngiệm
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
Giải phương trình
a,\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
b, \(\sqrt{x^4+2x^2+1}=\sqrt{x^2+10x+25}-10x-22\)
c, \(\sqrt{x+8+2\sqrt{x+7}}+\sqrt{x+8-2\sqrt{x+7}}=4\)
a, \(\sqrt{4x^2+20x+25}\) + \(\sqrt{x^2-8x+16}\) = \(\sqrt{x^2+18x+81}\)
⇔ 4x2 + 20x + 25 + \(2\sqrt{\left(4x^2+20x+25\right)\left(x^2-8x+16\right)}\) = x2 + 18x + 81
⇔ 4x2 + 20x + 25 - x2 - 18x - 81 + \(2\sqrt{\left(2x+5\right)^2.\left(x-4\right)^2}\) = 0
⇔ 3x2 + 2x - 56 + 2.(2x + 5) . (x - 4) = 0
⇔ 3x2 + 2x - 56 + (4x + 10) . (x - 4) = 0
⇔ 3x2 + 2x - 56 + 4x2 - 16x + 10x - 40 = 0
⇔ 7x2 - 4x - 96 = 0
x1 = 4 ( nhận )
x2 = \(\frac{-24}{7}\) ( nhận )
Vậy: S = {4; \(\frac{-24}{7}\)}