Tìm độ dài của tập giá trị của hàm số \(y=\sqrt{x-1}+\sqrt{5-x}\)
Cho hàm số y=(5-3\(\sqrt{ }\)2)x+\(\sqrt{ }\)2 -1
a) Hàm số đã cho đồng biến hay nghịch biến trên tập?vì sao
b) Tính giá trị của y khi x=5+3\(\sqrt{ }\)2
c) Tìm các giá trị của x khi y=0
a, Vì \(5-3\sqrt{2}>0\) nên hs đồng biến trên R
b, \(x=5+3\sqrt{2}\Leftrightarrow y=25-18+\sqrt{2}-1=6+\sqrt{2}\)
c, \(y=0\Leftrightarrow\left(5-3\sqrt{2}\right)x+\sqrt{2}-1=0\Leftrightarrow x=\dfrac{1-\sqrt{2}}{5-3\sqrt{2}}\)
\(\Leftrightarrow x=\dfrac{\left(1-\sqrt{2}\right)\left(5+3\sqrt{2}\right)}{7}=\dfrac{-2\sqrt{2}-1}{7}\)
tìm tập giá trị của hàm số y = \(\dfrac{1}{\sqrt[]{x^2-4x+5}}\)
\(\sqrt{x^2-4x+5}=\sqrt{x^2-4x+4+1}=\sqrt{\left(x-2\right)^2+1}>=1\forall x\)
=>\(y=\dfrac{1}{\sqrt{x^2-4x+5}}< =\dfrac{1}{1}=1\forall x\)
Vậy: TGT là \(T=(-\infty;1]\)
Tìm tập giá trị của hàm số: \(y=\sqrt{1+\sin\left(x-\dfrac{\pi}{5}\right)}-3\)
\(-1< =sin\left(x-\dfrac{pi}{5}\right)< =1\)
=>\(0< =sin\left(x-\dfrac{pi}{5}\right)+1< =2\)
=>\(0< =\sqrt{1+sin\left(x-\dfrac{pi}{5}\right)}< =\sqrt{2}\)
=>\(-3< =y< =\sqrt{2}-3\)
TGT là \(T=\left[-3;\sqrt{2}-3\right]\)
\(sin\left(x-\dfrac{\pi}{5}\right)\in\left[-1;1\right]\)
\(\Leftrightarrow\sqrt{1+sin\left(x-\dfrac{\pi}{5}\right)}\in\left[0;\sqrt{2}\right]\)
\(\Leftrightarrow\sqrt{1+sin\left(x-\dfrac{\pi}{5}\right)}-3\in\left[-3;\sqrt{2}-3\right]\)
Vậy \(y\in\left[-3;\sqrt{2}-3\right]\)
tìm tập giá trị của hàm số y = \(\dfrac{\sqrt[]{x}-2}{x-4}\)
Lời giải:
TXĐ: $[0; +\infty)\setminus\left\{4\right\}$
$y=\frac{\sqrt{x}-2}{x-4}=\frac{\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}=\frac{1}{\sqrt{x}+2}$
Ta có:
$\sqrt{x}\geq 0\Rightarrow y\leq \frac{1}{2}$ với mọi $x\in TXĐ$
$\sqrt{x}+2>0$ với mọi $x\in TXĐ$ nên $y>0$ với mọi $x\in TXĐ$
Vậy TGT của hàm số là $(0; \frac{1}{2}]$
Bài 1: Tìm tập hợp các giá trị của m để hàm số \(y=\sqrt{\left(m+10\right)x^2-2\left(m-2\right)x+1}\)có tập xác định D= R
Bài 2:Có bao nhiêu giá trị m nguyên để hàm số \(y=1-\sqrt{\left(m+1\right)x^2-2\left(m-1\right)x+2-2m}\)có tập xác định là R?
Cho hàm số y=\(\sqrt{x+m-1}+\sqrt{m-3x}\).Tìm tất cả các giá trị nguyên của tham số m để hàm số đã cho có tập xác định là R.
I. HÀM SỐ, TXĐ, CHẴN LẺ, ĐƠN ĐIỆU, ĐỒ THỊ.
1. TXĐ CỦA HÀM SỐ
Câu 1.Tìm tập xác định của hàm số y=\(\dfrac{\sqrt{x-1}}{x-3}\)
Câu 2.Tìm tập xác định của hàm số y= \(\sqrt[3]{x-1}\)
Câu 3. Tìm tập xác định của hàm số y=\(\dfrac{\sqrt[3]{1-x}+3}{\sqrt{x+3}}\)
Câu 4. Tìm tập xác định của hàm số y=\(\sqrt{\left|x-2\right|}\)
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
Cho x, y, z là những số thực tùy ý. Tìm giá trị lớn nhất, nhỏ nhất của hàm số sau trên tập xác định của nó :
\(y=\sqrt{x-1}+\sqrt{5-x}\)
- Áp dụng BĐT Bunhia- Cốp xki ta có:
\(\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)\)\(=2.4=8\).
Suy ra: \(\sqrt{x-1}+\sqrt{5-x}\le2\sqrt{2}\).
Vậy max \(\sqrt{x-1}+\sqrt{5-x}=2\sqrt{2}\) khi:
\(\sqrt{x-1}=\sqrt{5-x}\)\(\Leftrightarrow x-1=5-x\)\(\Leftrightarrow x=3\).
- Ta có: \(\sqrt{x-1}+\sqrt{5-x}\ge\sqrt{x-1+5-x}=\sqrt{4}=2\).
Vậy GTNN của \(\sqrt{x-1}+\sqrt{5-x}=2\) khi:
\(\left[{}\begin{matrix}x-1=0\\5-x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\).
Tìm tập giá trị của các hàm số sau:
a) \(y = 2\sin \left( {x - \frac{\pi }{4}} \right) - 1\);
b) \(y = \sqrt {1 + \cos x} - 2\);
a) Tập xác định của hàm số là \(D = \mathbb{R}\)
Vì \( - 1 \le \sin \left( {x - \frac{\pi }{4}} \right) \le 1 \Rightarrow - 2 \le 2\sin \left( {x - \frac{\pi }{4}} \right) \le 2\; \Rightarrow - 2 - 1 \le 2\sin \left( {x - \frac{\pi }{4}} \right) - 1 \le 2 - 1\)
\( \Rightarrow - 3 \le 2\sin \left( {x - \frac{\pi }{4}} \right) - 1 \le 1\)
Vây tập giá trị của hàm số \(y = 2\sin \left( {x - \frac{\pi }{4}} \right) - 1\) là \(T = \left[ { - 3;1} \right]\).
b) Tập xác định của hàm số là \(D = \mathbb{R}\)
Vì \( - 1 \le \cos x \le 1 \Rightarrow 0 \le 1 + \cos x \le 2 \Rightarrow 0 \le \sqrt {1 + \cos x} \le \sqrt 2 \;\; \Rightarrow - 2 \le \sqrt {1 + \cos x} - 2 \le \sqrt 2 - 2\)
Vậy tập giá trị của hàm số \(y = \sqrt {1 + \cos x} - 2\) là \(T = \left[ { - 2;\sqrt 2 - 2} \right]\)