Những câu hỏi liên quan
LT
Xem chi tiết
NT
26 tháng 5 2022 lúc 13:27

HB/HC=3/4 nên \(\dfrac{AB}{AC}=\sqrt{\dfrac{BH}{CH}}=\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow AC=4:\dfrac{\sqrt{3}}{2}=\dfrac{8\sqrt{3}}{3}\left(cm\right)\)

\(BC=\sqrt{AB^2+AC^2}=\dfrac{4\sqrt{21}}{3}\left(cm\right)\)

\(C=AB+BC+AC=\dfrac{12+8\sqrt{3}+4\sqrt{21}}{3}\left(cm\right)\)

Bình luận (0)
DT
Xem chi tiết
NT
30 tháng 5 2022 lúc 12:41

HB/HC=1/4

nen HC=4HB

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

\(\Leftrightarrow4HB^2=14^2=196\)

=>HB=7(cm)

=>HC=28(cm)

BC=BH+CH=35(cm)

\(AB=\sqrt{7\cdot35}=7\sqrt{5}\left(cm\right)\)

\(AC=\sqrt{28\cdot35}=14\sqrt{5}\left(cm\right)\)

\(C=AB+AC+BC=21\sqrt{5}+35\left(cm\right)\)

Bình luận (0)
DT
Xem chi tiết
DT
15 tháng 10 2017 lúc 9:22

Vẽ hình nữa nha

Bình luận (0)
TT
Xem chi tiết
H24
5 tháng 8 2018 lúc 10:25

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\)

=> \(HC=4HB\)

Đặt HC = x ta có: => HB = 4x

\(AH^2=HB.HC\)

hay \(14^2=4x.x\)

=> 196 = 4x2

=> x = 7

=> HB = 4x = 4.7 = 28

Ta có: BC = HB + HC = 7 + 28 = 35

Xét \(\Delta AHC\) vuông tại H ta có:

\(AH^2+HC^2=AC^2\)

=> AC = \(7\sqrt{5}\) cm

Xét \(\Delta AHB\) vuông tại H ta có:

\(AB^2=AH^2+BH^2=14^2+28^2=980\)

=> AB = \(14\sqrt{5}cm\)

Chu vi tam giác ABC:

AB +AC+BC= \(14\sqrt{5}+7\sqrt{5}+35=35+21\sqrt{5}\)

Bình luận (0)
3P
Xem chi tiết
H24
13 tháng 9 2023 lúc 13:58

Để tính chu vi của tam giác ABC, ta cần biết độ dài các cạnh của tam giác. Tuy nhiên, từ thông tin đã cho, chúng ta chỉ biết đường cao AH có độ dài là 14cm và tỉ lệ HB/HC là 1/4. Để tính chu vi, chúng ta cần thêm thông tin về độ dài các cạnh khác của tam giác.

Bình luận (0)
NT
13 tháng 9 2023 lúc 13:59

ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

=>HB*HB*4=14^2=196

=>HB=7(cm)

HC=7*4=28cm

BC=7+28=35cm

\(AB=\sqrt{7\cdot35}=7\sqrt{5}\left(cm\right)\)

\(AC=\sqrt{28\cdot35}=14\sqrt{5}\left(cm\right)\)

\(C_{ABC}=7\sqrt{5}+14\sqrt{5}+35=21\sqrt{5}+35\left(cm\right)\)

Bình luận (0)
NT
13 tháng 9 2023 lúc 14:06

Ta có :

\(\dfrac{HB}{HC}=\dfrac{1}{4}\Rightarrow\dfrac{HB}{1}=\dfrac{HC}{4}=\dfrac{HB.HC}{1.4}=\dfrac{AH^2}{4}=\dfrac{196}{4}=49\)

\(\Rightarrow\left\{{}\begin{matrix}HB=49.1=49\left(cm\right)\\HC=49.4=196\left(cm\right)\end{matrix}\right.\)

\(\Rightarrow BC=HB+HC=49+196=245\left(cm\right)\)

\(AB^2=BH.BC=49.245=49.49.5\)

\(\Rightarrow AB=49\sqrt[]{5}\left(cm\right)\)

\(AC^2=HC.BC=196.245=196.49.5\)

\(\Rightarrow AC=98\sqrt[]{5}\left(cm\right)\)

Chu vi \(\Delta ABC\) :

\(AB+AC+BC=49\sqrt[]{5}+98\sqrt[]{5}+245=147\sqrt[]{5}+245\left(cm\right)\)

Bình luận (0)
VT
Xem chi tiết
AH
15 tháng 10 2021 lúc 12:51

Lời giải:
 Vì $HB:HC=1:4$ nên đặt $HB=a; HC=4a$ với $a>0$

Áp dụng HTL trong tam giác vuông:
$AH^2=BH.CH$

$14^2=a.4a$

$4a^2=196$

$a^2=49\Rightarrow a=7$ (do $a>0$)

Khi đó:

$BH=a=7$ (cm); $CH=4a=28$ (cm)

$BC=BH+CH=7+28=35$ (cm)

$AB=\sqrt{AH^2+BH^2}=\sqrt{14^2+7^2}=7\sqrt{5}$ (cm)

$AC=\sqrt{AH^2+CH^2}=\sqrt{14^2+28^2}=14\sqrt{5}$ (cm)

Chu vi tam giác $ABC$:

$P=AB+BC+AC=7\sqrt{5}+14\sqrt{5}+35=21\sqrt{5}+35$ (cm)

 

Bình luận (0)
AH
15 tháng 10 2021 lúc 12:51

Hình vẽ:

Bình luận (0)
H24
Xem chi tiết
NT
21 tháng 7 2023 lúc 19:39

1: AB/AC=5/7

=>HB/HC=(AB/AC)^2=25/49

=>HB/25=HC/49=k

=>HB=25k; HC=49k

ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

=>1225k^2=15^2=225

=>k^2=9/49

=>k=3/7

=>HB=75/7cm; HC=21(cm)

 

Bình luận (0)
LM
Xem chi tiết
NT
2 tháng 9 2022 lúc 10:29

 

loading...

Bình luận (0)
LP
Xem chi tiết
MT
18 tháng 8 2017 lúc 20:17

Áp dụng hệ thức lượng trong tam giác vuông, ta có: AH2 = HB.HC

\(\dfrac{HB}{HC}=\dfrac{1}{4}\Rightarrow HB=\dfrac{HC}{4}\)

thay vào ta được: 142 = \(\dfrac{HC^2}{4}\)

=> HC = \(\sqrt{14^2.4}=28\) cm

=> HB = 142 : 28 = 7 cm

BC = HB +HC = 28+7 =35cm

AB = \(\sqrt{BC.BH}=\sqrt{35.7}=7\sqrt{5}cm\)

AC = \(\sqrt{HC.BC}=\sqrt{35.28}=14\sqrt{5}\) cm

Vậy chu vi tam giác là 35+\(21\sqrt{5}cm\)

Bình luận (0)