cho tg ABC vg tại A, đg cao AH. tính chu vi tg ABC, bt AH=14cm, \(\dfrac{HB}{HC}=\dfrac{1}{4}\)
cho tg ABC vuông tại A, đcao AH. Tính chu vi tg ABC. Biết AB=4cm, \(\dfrac{HB}{HC}\)=\(\dfrac{3}{4}\)
HB/HC=3/4 nên \(\dfrac{AB}{AC}=\sqrt{\dfrac{BH}{CH}}=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow AC=4:\dfrac{\sqrt{3}}{2}=\dfrac{8\sqrt{3}}{3}\left(cm\right)\)
\(BC=\sqrt{AB^2+AC^2}=\dfrac{4\sqrt{21}}{3}\left(cm\right)\)
\(C=AB+BC+AC=\dfrac{12+8\sqrt{3}+4\sqrt{21}}{3}\left(cm\right)\)
Cho tam giác ABC cân tại A. Kẻ đường cao AH , tính chu vi tam giác ABC biết AH = 14cm . \(\dfrac{HB}{HC}=\dfrac{1}{4}\)
HB/HC=1/4
nen HC=4HB
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
\(\Leftrightarrow4HB^2=14^2=196\)
=>HB=7(cm)
=>HC=28(cm)
BC=BH+CH=35(cm)
\(AB=\sqrt{7\cdot35}=7\sqrt{5}\left(cm\right)\)
\(AC=\sqrt{28\cdot35}=14\sqrt{5}\left(cm\right)\)
\(C=AB+AC+BC=21\sqrt{5}+35\left(cm\right)\)
Cho tam giác ABC cân tại A. Kẻ đường cao AH , tính chu vi tam giác ABC biết AH = 14cm . \(\dfrac{HB}{HC}=\dfrac{1}{4}\)
Cho tam giác ABC vuông tại A. Đường cao AH, biết AH=14cm, \(\dfrac{HB}{HC}=\dfrac{1}{4}\). Tính chu vi tam giác ABC
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\)
=> \(HC=4HB\)
Đặt HC = x ta có: => HB = 4x
\(AH^2=HB.HC\)
hay \(14^2=4x.x\)
=> 196 = 4x2
=> x = 7
=> HB = 4x = 4.7 = 28
Ta có: BC = HB + HC = 7 + 28 = 35
Xét \(\Delta AHC\) vuông tại H ta có:
\(AH^2+HC^2=AC^2\)
=> AC = \(7\sqrt{5}\) cm
Xét \(\Delta AHB\) vuông tại H ta có:
\(AB^2=AH^2+BH^2=14^2+28^2=980\)
=> AB = \(14\sqrt{5}cm\)
Chu vi tam giác ABC:
AB +AC+BC= \(14\sqrt{5}+7\sqrt{5}+35=35+21\sqrt{5}\)
Cho ∆ABC vuông tại A, đường cao AH. Tính chu vi ∆ABC biết AH=14cm, HB/HC=1/4
Để tính chu vi của tam giác ABC, ta cần biết độ dài các cạnh của tam giác. Tuy nhiên, từ thông tin đã cho, chúng ta chỉ biết đường cao AH có độ dài là 14cm và tỉ lệ HB/HC là 1/4. Để tính chu vi, chúng ta cần thêm thông tin về độ dài các cạnh khác của tam giác.
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>HB*HB*4=14^2=196
=>HB=7(cm)
HC=7*4=28cm
BC=7+28=35cm
\(AB=\sqrt{7\cdot35}=7\sqrt{5}\left(cm\right)\)
\(AC=\sqrt{28\cdot35}=14\sqrt{5}\left(cm\right)\)
\(C_{ABC}=7\sqrt{5}+14\sqrt{5}+35=21\sqrt{5}+35\left(cm\right)\)
Ta có :
\(\dfrac{HB}{HC}=\dfrac{1}{4}\Rightarrow\dfrac{HB}{1}=\dfrac{HC}{4}=\dfrac{HB.HC}{1.4}=\dfrac{AH^2}{4}=\dfrac{196}{4}=49\)
\(\Rightarrow\left\{{}\begin{matrix}HB=49.1=49\left(cm\right)\\HC=49.4=196\left(cm\right)\end{matrix}\right.\)
\(\Rightarrow BC=HB+HC=49+196=245\left(cm\right)\)
\(AB^2=BH.BC=49.245=49.49.5\)
\(\Rightarrow AB=49\sqrt[]{5}\left(cm\right)\)
\(AC^2=HC.BC=196.245=196.49.5\)
\(\Rightarrow AC=98\sqrt[]{5}\left(cm\right)\)
Chu vi \(\Delta ABC\) :
\(AB+AC+BC=49\sqrt[]{5}+98\sqrt[]{5}+245=147\sqrt[]{5}+245\left(cm\right)\)
Cho tam giác ABC vuông tại A đường cao AH. Tính chu vi của tam giác ABC biết AH= 14cm, HB/HC = 1/4
Lời giải:
Vì $HB:HC=1:4$ nên đặt $HB=a; HC=4a$ với $a>0$
Áp dụng HTL trong tam giác vuông:
$AH^2=BH.CH$
$14^2=a.4a$
$4a^2=196$
$a^2=49\Rightarrow a=7$ (do $a>0$)
Khi đó:
$BH=a=7$ (cm); $CH=4a=28$ (cm)
$BC=BH+CH=7+28=35$ (cm)
$AB=\sqrt{AH^2+BH^2}=\sqrt{14^2+7^2}=7\sqrt{5}$ (cm)
$AC=\sqrt{AH^2+CH^2}=\sqrt{14^2+28^2}=14\sqrt{5}$ (cm)
Chu vi tam giác $ABC$:
$P=AB+BC+AC=7\sqrt{5}+14\sqrt{5}+35=21\sqrt{5}+35$ (cm)
Giúp mình với ak!!!!
1. Cho tam giác ABC vuông tại A, biết AB/AC=5/7 và đường cao AH=15cm. Tính HB, HC.
2. Cho tam giác ABC vuông tại A, có đường cao AH=14cm và HB/HC=1/4. Tính chu vi tam giác ABC.
1: AB/AC=5/7
=>HB/HC=(AB/AC)^2=25/49
=>HB/25=HC/49=k
=>HB=25k; HC=49k
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>1225k^2=15^2=225
=>k^2=9/49
=>k=3/7
=>HB=75/7cm; HC=21(cm)
Bài 1)Cho ΔABC vuông ở A,đường cao AH.Tính chu vi ΔABC,biết AH =14cm; \(\dfrac{HB}{HC}=\dfrac{1}{4}\)
cho tam giác ABC vuông =A , đg cao AH . tính chu vi tam giác ABC , biết AH=14 cm, \(\dfrac{HB}{HC}=\dfrac{1}{4}\)
Áp dụng hệ thức lượng trong tam giác vuông, ta có: AH2 = HB.HC
mà \(\dfrac{HB}{HC}=\dfrac{1}{4}\Rightarrow HB=\dfrac{HC}{4}\)
thay vào ta được: 142 = \(\dfrac{HC^2}{4}\)
=> HC = \(\sqrt{14^2.4}=28\) cm
=> HB = 142 : 28 = 7 cm
BC = HB +HC = 28+7 =35cm
AB = \(\sqrt{BC.BH}=\sqrt{35.7}=7\sqrt{5}cm\)
AC = \(\sqrt{HC.BC}=\sqrt{35.28}=14\sqrt{5}\) cm
Vậy chu vi tam giác là 35+\(21\sqrt{5}cm\)