Chương I - Hệ thức lượng trong tam giác vuông

H24

cho tg ABC vg tại A, đg cao AH. tính chu vi tg ABC, bt AH=14cm, \(\dfrac{HB}{HC}=\dfrac{1}{4}\)

NT
15 tháng 7 2021 lúc 20:30

Ta có : \(\dfrac{HB}{HC}=\dfrac{1}{4}\Rightarrow HB=\dfrac{1}{4}HC\)

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : 

\(AH^2=HB.HC=\left(\dfrac{1}{4}HC\right)HC\Rightarrow256=\dfrac{1}{4}HC^2\)

\(\Leftrightarrow HC^2=1024\Leftrightarrow HC=32\)cm 

\(\Rightarrow HB=\dfrac{1}{4}.32=8\)cm 

=> BC = HB + HC = 32 + 8 = 40 cm 

* Áp dụng hệ thức : \(AB^2=BH.BC=8.40=320\Rightarrow AB=8\sqrt{5}\)cm 

* Áp dụng hệ thức : \(AC^2=CH.BC=32.40=1280\Rightarrow AC=16\sqrt{5}\)cm 

Chu vi tam giác ABC là : 

\(P_{ABC}=AB+AC+BC=24\sqrt{5} +40\)cm 

Bình luận (0)
NT
15 tháng 7 2021 lúc 20:39

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\)

nên \(HB=\dfrac{1}{4}HC\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(HB\cdot HC=AH^2\)

\(\Leftrightarrow HC\cdot\dfrac{1}{4}\cdot HC=14^2=196\)

\(\Leftrightarrow HC^2=196:\dfrac{1}{4}=196\cdot4=784\)

hay HC=28(cm)

\(\Leftrightarrow HB=\dfrac{1}{4}\cdot HC=\dfrac{1}{4}\cdot28=7\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=7\cdot35=245\\AC^2=28\cdot35=980\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=7\sqrt{5}\left(cm\right)\\AC=14\sqrt{5}\left(cm\right)\end{matrix}\right.\)

Chu vi tam giác ABC là:

\(C_{ABC}=AB+AC+BC=7\sqrt{5}+14\sqrt{5}+35=35+21\sqrt{5}\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
VL
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết