Những câu hỏi liên quan
TV
Xem chi tiết
NA
Xem chi tiết
HP
Xem chi tiết
NT
30 tháng 8 2022 lúc 13:00

a: \(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(a-\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{1}\)

\(=a-1\)

b: \(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{\sqrt{ab}+b+\sqrt{ab}-b}{\sqrt{a}\left(a-b\right)}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{1}{\sqrt{a}}\)

c: \(=\dfrac{a\sqrt{b}+b}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\sqrt{\dfrac{b\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(a+\sqrt{b}\right)^2}}\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=b\)

Bình luận (0)
AK
Xem chi tiết
AK
26 tháng 6 2023 lúc 15:44

câu a ở phần mẫu của cụm đầu tiên cái \(\left(\sqrt{a+\sqrt{b}}\right)^2\rightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\) giúp em với ạ ( em cảm ơn )

Bình luận (3)
GH
26 tháng 6 2023 lúc 16:02

a

\(=\dfrac{a-2\sqrt{ab}+b+4\sqrt{ab}}{a+2\sqrt{ab}+b-4\sqrt{ab}}.\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)^2}\\ =\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}.\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}\\ =\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2.\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2}\\ =\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}\)

Bình luận (0)
HL
Xem chi tiết
NT
17 tháng 12 2023 lúc 13:24

a: \(\dfrac{2}{\sqrt{3}-1}-\dfrac{2}{\sqrt{3}+1}\)

\(=\dfrac{2\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)}{3-1}\)

\(=\dfrac{2\sqrt{3}+2-2\sqrt{3}+2}{2}=\dfrac{4}{2}=2\)

b: \(\dfrac{\sqrt{12}-\sqrt{6}}{\sqrt{30}-\sqrt{15}}\)

\(=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{\sqrt{15}\left(\sqrt{2}-1\right)}\)

\(=\dfrac{\sqrt{6}}{\sqrt{15}}=\sqrt{\dfrac{6}{15}}=\sqrt{\dfrac{2}{5}}=\dfrac{\sqrt{10}}{5}\)

c: \(\sqrt{9a}+\sqrt{81a}+3\sqrt{25a}-16\sqrt{49a}\)

\(=3\sqrt{a}+9\sqrt{a}+3\cdot5\sqrt{a}-16\cdot7\sqrt{a}\)

\(=27\sqrt{a}-112\sqrt{a}=-85\sqrt{a}\)

d: \(\dfrac{ab-bc}{\sqrt{ab}-\sqrt{bc}}=\dfrac{\left(\sqrt{ab}-\sqrt{bc}\right)\left(\sqrt{ab}+\sqrt{bc}\right)}{\sqrt{ab}-\sqrt{bc}}\)

\(=\sqrt{ab}+\sqrt{bc}\)

e: \(a\left(\sqrt{\dfrac{a}{b}+2\sqrt{ab}+b\cdot\sqrt{\dfrac{a}{b}}}\right)\cdot\sqrt{ab}\)

\(=a\cdot\sqrt{\dfrac{a}{b}\cdot ab+2\sqrt{ab}\cdot ab+b\cdot\sqrt{\dfrac{a}{b}}\cdot ab}\)

\(=a\cdot\sqrt{a^2+2\cdot ab\cdot\sqrt{ab}+a\sqrt{a}\cdot b\sqrt{b}}\)

\(=a\cdot\sqrt{a^2+3\cdot a\cdot\sqrt{a}\cdot b\cdot\sqrt{b}}\)

e: ĐKXĐ: a>=0 và a<>1

\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}\)

\(=\left(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}+1}\)

\(=\left(1+\sqrt{a}+\sqrt{a}+a\right)\cdot\left(a-\sqrt{a}+1\right)\)

\(=\left(\sqrt{a}+1\right)^2\cdot\left(a-\sqrt{a}+1\right)\)

Bình luận (0)
N2
Xem chi tiết
NT
22 tháng 10 2023 lúc 14:11

 

a: ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\b>0\\a< >b\end{matrix}\right.\)

b: \(M=\dfrac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{b}{a-\sqrt{ab}}+\dfrac{\sqrt{b}}{a+\sqrt{ab}}\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{b\left(a+\sqrt{ab}\right)+\sqrt{b}\left(a-\sqrt{ab}\right)}{a^2-ab}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{a\left(a-b\right)}\cdot\dfrac{ab+b\sqrt{ab}+a\sqrt{b}-b\sqrt{a}}{2\sqrt{ab}}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{a\left(\sqrt{a}-\sqrt{b}\right)\cdot\left(\sqrt{a}+\sqrt{b}\right)}\cdot\dfrac{\sqrt{ab}\left(\sqrt{ab}+b+\sqrt{a}-\sqrt{b}\right)}{2\sqrt{ab}}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{a\left(\sqrt{a}+\sqrt{b}\right)}\cdot\dfrac{\sqrt{ab}+b+\sqrt{a}-\sqrt{b}}{2}\)

\(=\dfrac{2\sqrt{a}\left(\sqrt{a}+\sqrt{b}-1\right)+\sqrt{ab}+b+\sqrt{a}-\sqrt{b}}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2a+2\sqrt{ab}-2\sqrt{a}+\sqrt{ab}+b+\sqrt{a}-\sqrt{b}}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2a+3\sqrt{ab}-\sqrt{a}+b-\sqrt{b}}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2a+3\sqrt{ab}+b-\left(\sqrt{a}+\sqrt{b}\right)}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{\left(2\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)-\left(\sqrt{a}+\sqrt{b}\right)}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2\sqrt{a}+\sqrt{b}-1}{2a}\)

Giả sử như a=0,1 và b=0,11 thì M<0 nha bạn

=>Đề này sai rồia: ĐKXĐ: 

b: \(M=\dfrac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{b}{a-\sqrt{ab}}+\dfrac{\sqrt{b}}{a+\sqrt{ab}}\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{b\left(a+\sqrt{ab}\right)+\sqrt{b}\left(a-\sqrt{ab}\right)}{a^2-ab}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{a\left(a-b\right)}\cdot\dfrac{ab+b\sqrt{ab}+a\sqrt{b}-b\sqrt{a}}{2\sqrt{ab}}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{a\left(\sqrt{a}-\sqrt{b}\right)\cdot\left(\sqrt{a}+\sqrt{b}\right)}\cdot\dfrac{\sqrt{ab}\left(\sqrt{ab}+b+\sqrt{a}-\sqrt{b}\right)}{2\sqrt{ab}}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{a\left(\sqrt{a}+\sqrt{b}\right)}\cdot\dfrac{\sqrt{ab}+b+\sqrt{a}-\sqrt{b}}{2}\)

\(=\dfrac{2\sqrt{a}\left(\sqrt{a}+\sqrt{b}-1\right)+\sqrt{ab}+b+\sqrt{a}-\sqrt{b}}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2a+2\sqrt{ab}-2\sqrt{a}+\sqrt{ab}+b+\sqrt{a}-\sqrt{b}}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2a+3\sqrt{ab}-\sqrt{a}+b-\sqrt{b}}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2a+3\sqrt{ab}+b-\left(\sqrt{a}+\sqrt{b}\right)}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{\left(2\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)-\left(\sqrt{a}+\sqrt{b}\right)}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2\sqrt{a}+\sqrt{b}-1}{2a}\)

Giả sử như a=0,1 và b=0,11 thì M<0 nha bạn

=>Đề này sai rồi

Bình luận (0)
LM
Xem chi tiết
NT
10 tháng 7 2022 lúc 11:06

a: \(=ab+2\cdot\sqrt{\dfrac{b}{a}\cdot ab}-\sqrt{ab\cdot\left(\dfrac{a}{b}+\dfrac{1}{\sqrt{ab}}\right)}\)

\(=ab+2b-\sqrt{ab\cdot\dfrac{a\sqrt{a}+\sqrt{b}}{b\sqrt{a}}}\)

\(=ab+2b-\sqrt{\sqrt{a}\cdot\left(a\sqrt{a}+\sqrt{b}\right)}\)

b: \(=\left(\sqrt{\dfrac{a^2m^2\cdot n}{b^2\cdot m}}-\sqrt{mn\cdot\dfrac{a^2b^2}{n^2}}+\sqrt{\dfrac{a^4}{b^4}\cdot\dfrac{m}{n}}\right)\cdot a^2b^2\cdot\sqrt{\dfrac{n}{m}}\)

\(=\left(\dfrac{a\sqrt{mn}}{b}-\sqrt{a^2b^2\cdot\dfrac{m}{n}}+\dfrac{a^2}{b^2}\cdot\sqrt{\dfrac{m}{n}}\right)\cdot\sqrt{\dfrac{n}{m}}\cdot a^2b^2\)

\(=\left(\dfrac{an}{b}-ab+\dfrac{a^2}{b^2}\right)\cdot a^2b^2\)

\(=a^3nb-a^3b^3+a^4\)

Bình luận (0)
AH
Xem chi tiết
AH
12 tháng 10 2017 lúc 10:46

chỗ đầu mình nhầm B = \(\left(\sqrt{a}+\dfrac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(....\right)\)

Bình luận (0)
H24
Xem chi tiết
AH
18 tháng 6 2021 lúc 18:57

Lời giải:

\(=\sqrt{ab}.\sqrt{ab}+2.\sqrt{\frac{b}{a}}.\sqrt{ab}-\sqrt{\frac{a}{b}+\sqrt{\frac{1}{ab}}}.\sqrt{ab}\)

\(=ab+2\sqrt{b^2}-\sqrt{(\frac{a}{b}+\sqrt{\frac{1}{ab}}).ab}=ab+2|b|+\sqrt{a^2+\sqrt{ab}}\)

Bình luận (0)
BB
Xem chi tiết
NT
12 tháng 9 2021 lúc 20:09

Ta có: \(b=\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)

\(=\dfrac{2\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}{3\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}\)

\(=\dfrac{2}{3}\)

Ta có: \(a=\sqrt{4+2\sqrt{2}}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2}}}\)

\(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{4-2-\sqrt{2}}\)

\(=\sqrt{2\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}\)

=2

Thay a=2 và \(b=\dfrac{2}{3}\) vào M, ta được:

\(M=\dfrac{1+2\cdot\dfrac{2}{3}}{2+\dfrac{2}{3}}-\dfrac{1-2\cdot\dfrac{2}{3}}{2-\dfrac{2}{3}}\)

\(=\dfrac{7}{8}+\dfrac{1}{4}\)

\(=\dfrac{7}{8}+\dfrac{2}{8}=\dfrac{9}{8}\)

Bình luận (0)