rút gọn biểu thức
A=\(\dfrac{\sqrt{a}-1}{a\sqrt{a}-a+\sqrt{a}}:\dfrac{1}{a^2+\sqrt{a}}\) với a >0
B=\(\dfrac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}+\dfrac{\sqrt{b}}{a+\sqrt{ab}}\right)\) với a>0 b>0 và a khác b
C=\(\dfrac{a\sqrt{b}+b}{a-b}.\sqrt{\dfrac{ab+b^2-2\sqrt{ab^3}}{a\left(a+2\sqrt{b}\right)+b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}\) với a>b>0
\(A=\dfrac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}+\dfrac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
\(B=\sqrt{a}+\dfrac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}:\left(\dfrac{a}{\sqrt{ab}}+\dfrac{b}{\sqrt{ab}-a}\dfrac{a+b}{\sqrt{ab}}\right)\)
a. Rút gọn biểu thức
b. Tìm giá trị nguyên của x để biểu thức có giá trị nguyên
Rút gọn pt
a, \(-\dfrac{2}{3}\sqrt{\dfrac{\left(a-b\right)^3.b^5}{c}.\dfrac{9}{4}\sqrt{\dfrac{c^3}{2\left(a-b\right)}}\sqrt{ }98b}\)
b, \(\left(\sqrt{ab}+2\sqrt{\dfrac{b}{a}}-\sqrt{\dfrac{a}{b}+\dfrac{1}{ab}}\right).\sqrt{ab}\)
c, \(\left(\sqrt{b}-3\sqrt{3}+5\sqrt{2}-\dfrac{1}{2}\sqrt{8}\right).2\sqrt{6}\)
d, \(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
\(\left(\sqrt{\dfrac{a}{b}+2\sqrt{ab}}+b\sqrt{\dfrac{a}{b}}\right)\sqrt{ab}\)
P=\(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\)
Rút gọn
Tính gtri của P khi a=2\(\sqrt{3}\) và b=\(\sqrt{3}\)
\(N=\dfrac{a}{\sqrt{ab}+b}+\dfrac{1}{\sqrt{ab}-a}-\dfrac{a+b}{\sqrt{ab}}\)
a, Rút gọn N
b, Tính N khi a=\(\sqrt{6+2\sqrt{5}}\)
b=\(\sqrt{6-2\sqrt{5}}\)
Cho: D= (\(\dfrac{\sqrt{a}+\sqrt{b}}{1-\sqrt{ab}}+\dfrac{\sqrt{a}+\sqrt{b}}{1+\sqrt{ab}}\)):(\(1+\dfrac{a+b+2ab}{1-ab}\))
a) Rút gọn D
b)Tính gt của D biết a=\(\dfrac{2}{2-\sqrt{3}}\)
c) Tìm GTLN của D
P=\(\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{3\sqrt{ab}}{a\sqrt{a}+b\sqrt{b}}\right).\left[\left(\dfrac{1}{\sqrt{a}-\sqrt{b}}-\dfrac{3\sqrt{ab}}{a\sqrt{a}-b\sqrt{b}}\right):\dfrac{a-b}{a+\sqrt{ab}+b}\right]\)
a) Rút gọn
b) Tính P khi a=16 và b=4
Chứng minh rằng :
a) \(\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-ab\right)\left(\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\right)\) với a> hoặc = 0 ; b > hoặc = 0 ; a khác b .
b) \(\dfrac{2+\sqrt{2}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\sqrt{2}\)