Bài 3: Liên hệ giữa phép nhân và phép khai phương

LM

Thực hiện phép tính:

a) \(\left(\sqrt{ab}+2\sqrt{\dfrac{b}{a}}-\sqrt{\dfrac{a}{b}+\sqrt{\dfrac{1}{ab}}}\right)\cdot\sqrt{ab}\)

b) \(\left(\dfrac{am}{b}\sqrt{\dfrac{n}{m}}-\dfrac{ab}{n}\sqrt{mn}+\dfrac{a^2}{b^2}\sqrt{\dfrac{m}{n}}\right)\cdot a^2b^2\cdot\sqrt{\dfrac{n}{m}}\)

NT
10 tháng 7 2022 lúc 11:06

a: \(=ab+2\cdot\sqrt{\dfrac{b}{a}\cdot ab}-\sqrt{ab\cdot\left(\dfrac{a}{b}+\dfrac{1}{\sqrt{ab}}\right)}\)

\(=ab+2b-\sqrt{ab\cdot\dfrac{a\sqrt{a}+\sqrt{b}}{b\sqrt{a}}}\)

\(=ab+2b-\sqrt{\sqrt{a}\cdot\left(a\sqrt{a}+\sqrt{b}\right)}\)

b: \(=\left(\sqrt{\dfrac{a^2m^2\cdot n}{b^2\cdot m}}-\sqrt{mn\cdot\dfrac{a^2b^2}{n^2}}+\sqrt{\dfrac{a^4}{b^4}\cdot\dfrac{m}{n}}\right)\cdot a^2b^2\cdot\sqrt{\dfrac{n}{m}}\)

\(=\left(\dfrac{a\sqrt{mn}}{b}-\sqrt{a^2b^2\cdot\dfrac{m}{n}}+\dfrac{a^2}{b^2}\cdot\sqrt{\dfrac{m}{n}}\right)\cdot\sqrt{\dfrac{n}{m}}\cdot a^2b^2\)

\(=\left(\dfrac{an}{b}-ab+\dfrac{a^2}{b^2}\right)\cdot a^2b^2\)

\(=a^3nb-a^3b^3+a^4\)

Bình luận (0)

Các câu hỏi tương tự
TV
Xem chi tiết
H24
Xem chi tiết
BA
Xem chi tiết
AN
Xem chi tiết
LP
Xem chi tiết
LM
Xem chi tiết
TD
Xem chi tiết
LN
Xem chi tiết
LN
Xem chi tiết