Xác định a để tập xác định của hàm số \(y=\sqrt{2x+a}+\sqrt{2a-1-x}\) là một đoạn có độ dài bằng 1
Bài 4. Xác định a để tập xác định của hàm số \(y=\sqrt{2x-a}+\sqrt{2a-1-x}\) là một đoạn có độ dài bằng 1.
ĐKXĐ: \(\left\{{}\begin{matrix}2x-a\ge0\\2a-1-x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{a}{2}\\x\le2a-1\end{matrix}\right.\)
Miền xác định là 1 đoạn có độ dài bằng 1 khi:
\(2a-1-\dfrac{a}{2}=1\Rightarrow a=\dfrac{4}{3}\)
Xác định m để hàm số \(y=\sqrt{2-x}+\sqrt{2x+m}\) có tập xác định có độ dài là 1
Lời giải:
ĐKXĐ: \(\left\{\begin{matrix}
2-x\geq 0\\
2x+m\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x\leq 2\\
x\geq \frac{-m}{2}\end{matrix}\right.\) \(\Leftrightarrow x\in [\frac{-m}{2}; 2]\)
Để TXĐ có độ dài $1$ thì:
\(2-\frac{-m}{2}=1\Leftrightarrow m=-2\)
Câu 1.
a) Cho tập A,B lần lượt là tập xác định của hàm số f(x) = \(\sqrt{6-x}\) và g(x) = \(\dfrac{3}{2x+1}\). Xác định các tập A∩B, A∪B, A∖B, CRA.
b) Cho tập hợp C=[−3;8] và D=[m−6;m+3). Với giá trị nào của m thì C∩D là một đoạn thẳng có độ dài bằng 4.
a: f(x) có ĐKXĐ là 6-x>=0
=>x<=6
=>\(A=(-\infty;6]\)
g(x) có ĐKXĐ: là 2x+1<>0
=>\(x< >-\dfrac{1}{2}\)
=>\(B=R\backslash\left\{-\dfrac{1}{2}\right\}\)
\(A\cap B=(-\infty;6]\cap\left(R\backslash\left\{-\dfrac{1}{2}\right\}\right)\)
\(=(-\infty;6]\backslash\left\{\dfrac{1}{2}\right\}\)
\(A\cup B=R\)
\(A\text{B}=(-\infty;6]\backslash\left(R\backslash\left\{-\dfrac{1}{2}\right\}\right)=\left\{-\dfrac{1}{2}\right\}\)
\(B\backslash A=\left(6;+\infty\right)\)
Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\sqrt{x-m}-\sqrt{6-2x}\)
có tập xác định là 1 đoạn trên trục số là
\(\left\{{}\begin{matrix}m\le x\\x\le3\end{matrix}\right.\Rightarrow m\le3\Rightarrow\left[m;3\right]\)
Vay \(m\le3\) thi ham so co tap xd la 1 doan tren truc so
P/s: Ve cai truc so ra la hieu
Xác định a để tập xác định của hàm số \(y=\sqrt{2x-a}+\sqrt{2a-1-x}\) là một đoạn có độ dài bằng 1.
y= \(\dfrac{mx}{\sqrt{x-m+2}+1}\)
a, Tìm tập xác định của hàm số theo tham số m
b, Tìm m để hàm số có tập xác định trên (0;1)
1,Rút gọn
A=1+(\(\dfrac{2a+\sqrt{a}-1}{1-a}\)-\(\dfrac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\)) x \(\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\)
2,Cho hàm số bậc nhất y=(2-3m)x+m2 +1(đồ thị d)
Xác định m để d cắt đường thẳng y=x-2 tại điểm có tung độ là -3
\(1,\\ A=1+\left[\dfrac{\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\right]\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\\ A=1+\left[\dfrac{2\sqrt{a}-1}{1-\sqrt{a}}-\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\right]\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\\ A=1+\dfrac{\left(2\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)-\left(2\sqrt{a}-1\right)\left(a+\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(A=1+\dfrac{\left(2\sqrt{a}-1\right)\left(a+\sqrt{a}+1-a-\sqrt{a}\right)}{-\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\\ A=1+\dfrac{-\sqrt{a}\left(2\sqrt{a}-1\right)}{\left(a+\sqrt{a}+1\right)\left(2\sqrt{a}-1\right)}\\ A=1-\dfrac{\sqrt{a}}{a+\sqrt{a}+1}=\dfrac{a+\sqrt{a}+1-\sqrt{a}}{a+\sqrt{a}+1}=\dfrac{a+1}{a+\sqrt{a}+1}\)
2.
Vì 2 đt cắt tại điểm có tung độ -3
\(\Leftrightarrow y=-3\Leftrightarrow\left\{{}\begin{matrix}\left(2-3m\right)x+m^2+1=-3\\x-2=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3m-2+m^2+1+3=0\\x=-1\end{matrix}\right.\\ \Leftrightarrow m^2+3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-2\end{matrix}\right.\)
I. HÀM SỐ, TXĐ, CHẴN LẺ, ĐƠN ĐIỆU, ĐỒ THỊ.
1. TXĐ CỦA HÀM SỐ
Câu 1.Tìm tập xác định của hàm số y=\(\dfrac{\sqrt{x-1}}{x-3}\)
Câu 2.Tìm tập xác định của hàm số y= \(\sqrt[3]{x-1}\)
Câu 3. Tìm tập xác định của hàm số y=\(\dfrac{\sqrt[3]{1-x}+3}{\sqrt{x+3}}\)
Câu 4. Tìm tập xác định của hàm số y=\(\sqrt{\left|x-2\right|}\)
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
Tìm m để hàm số sau có tập xác định bằng rỗng:
\(y=\sqrt{2x-m+1}-x\sqrt{m+3-x}\)
Giải y bằng cách rút gọn cả 2 vế của phương trình, sau đó tách riêng biến.
\(y^2+2xy\left(m-x+3\right)^{\frac{1}{2}}+x^2m+3x^2-x^3=2x-m+1\)
tìm tập xác định bằng cách tìm nơi mà biểu thức xác định.
ký hiệu khoảng: \(\left(-\infty,\infty\right)\)
ký hiệu xây dựng tập hợp: \(\left\{x|x\inℝ\right\}\)