giúp mình với
Rút gọn rồi tính: \(\sqrt{36x^4\left(b-2\right)^2}\) (b<2)
Giúp mình với:
Cho b/t A=\(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(x+3\right)}{x-9}\) (\(x\ge0\) ; \(x\ne9\) )
Rút gọn b/t A rồi tính giá trị tại x= \(2\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
Mai Kt rồi :( :( :(
a. \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(x+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{3}{\sqrt{x}+3}\)
. \(x=2.\left(4+\sqrt{15}\right).\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)
\(\Rightarrow x=\left(\sqrt{5}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\sqrt{2}}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)^2.\left(\sqrt{5}-\sqrt{3}\right)^3\)\(=4\left(\sqrt{5}-\sqrt{3}\right)\)
Thay \(x=4\left(\sqrt{5}-\sqrt{3}\right)\Rightarrow A=\frac{3}{\sqrt{4\left(\sqrt{5}-\sqrt{3}\right)}+3}\)
\(=\frac{3}{2\sqrt{\left(\sqrt{5}-\sqrt{3}\right)}+3}\)
Rút gọn rồi tính giá trị của các biểu thức sau:
a) \(\sqrt{4\left(1+6x+9x^2\right)^2}\) tại x = \(-\sqrt{2}\)
b) \(\sqrt{9a^2\left(b^2+4-4b\right)}\) tại a =2, b =\(-\sqrt{3}\)
\(b.\)
\(=\sqrt{\left(3a\right)^2\cdot\left(b-2\right)^2}\)
\(=\left|3a\right|\cdot\left|b-2\right|\)
Với : \(a=2,b=-\sqrt{3}\)
\(2\cdot3\cdot\left(-\sqrt{3}-2\right)=6\cdot\left(-\sqrt{3}-2\right)\)
\(a.\)
\(=\sqrt{4\cdot\left(3x+1\right)^2}=2\cdot\left|3x+1\right|\)
Với : \(x=-\sqrt{2}\)
\(2\cdot\left|3\cdot-\sqrt{2}+1\right|=2\cdot\left|1-\sqrt{6}\right|\)
a) Ta có:\(\sqrt{4\left(9x^2+6x+1\right)^2}\)
\(=2\left(3x+1\right)^2\)
\(=2\cdot\left(-3\cdot\sqrt{2}+1\right)^2\)
\(=2\left(19-6\sqrt{2}\right)\)
\(=38-12\sqrt{2}\)
b) Ta có: \(\sqrt{9a^2\left(b^2-4b+4\right)}\)
\(=3\left|a\right|\left|b-2\right|\)
\(=3\cdot\left|2\right|\cdot\left|-\sqrt{3}-2\right|\)
\(=6\left(2+\sqrt{3}\right)=12+6\sqrt{3}\)
Rút gọn các biểu thức sau :
1, \(\sqrt{4\left(a-4\right)^2}\) ( với a \(\ge\) 4 )
2, \(\sqrt{9\left(b-5\right)^2}\) ( với b < 5 )
Giúp mình vs mình cần gấp ạ , cảm ơn nhìuuu 🌷
\(1,\sqrt{4\left(a-4\right)^2}\left(dkxd:a\ge4\right)\)
\(=\sqrt{4}.\sqrt{\left(a-4\right)^2}\)
\(=\sqrt{2^2}.\left|a-4\right|\)
\(=2\left(a-4\right)\)
\(=2a-8\)
\(2,\sqrt{9\left(b-5\right)^2}\left(dkxd:b< 5\right)\)
\(=\sqrt{9}.\sqrt{\left(b-5\right)^2}\)
\(=\sqrt{3^2}.\left|b-5\right|\)
\(=3\left(-b+5\right)\)
\(=-3b+15\)
Rút gọn rồi tính các biểu thức sau:
a)\(A=\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right)\left(\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\) với \(a^2=6-3\sqrt{3};b^2=2+\sqrt{3}\)
b)\(B=\dfrac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4}+x+2}\)với \(x=1+\sqrt{5}\)
Câu a, bạn coi lại đề xem $a^2=6-3\sqrt{3}$ hay $a=6-3\sqrt{3}$???
b.
\(B=\frac{\sqrt{(x-2)+(x+2)+2\sqrt{(x-2)(x+2)}}}{\sqrt{x^2-4}+x+2}\)
\(=\frac{\sqrt{(\sqrt{x-2}+\sqrt{x+2})^2}}{\sqrt{x^2-4}+x+2}=\frac{\sqrt{x-2}+\sqrt{x+2}}{\sqrt{x^2-4}+x+2}=\frac{\sqrt{x-2}+\sqrt{x+2}}{\sqrt{x+2}(\sqrt{x-2}+\sqrt{x+2})}=\frac{1}{\sqrt{x+2}}\)
\(=\frac{1}{\sqrt{3+\sqrt{5}}}=\frac{\sqrt{2}}{\sqrt{6+2\sqrt{5}}}=\frac{\sqrt{2}}{\sqrt{(\sqrt{5}+1)^2}}=\frac{\sqrt{2}}{\sqrt{5}+1}\)
Nguyễn Hoàng trung: Chả qua nếu $a=6-3\sqrt{3}; b=2+\sqrt{3}$ thì kết quả sẽ đẹp hơn. Còn như đề thì vẫn rút gọn được.
\(A=\frac{a-\sqrt{ab}+b}{(\sqrt{a}-\sqrt{b})^2}=\frac{a-\sqrt{ab}+b}{a-2\sqrt{ab}+b}\)
\(2a^2=12-6\sqrt{3}=(3-\sqrt{3})^2\Rightarrow a=\frac{3-\sqrt{3}}{\sqrt{2}}\) (do $a\geq 0$)
\(2b^2=4+2\sqrt{3}=(\sqrt{3}+1)^2\Rightarrow b=\frac{\sqrt{3}+1}{\sqrt{2}}\) (do $b\geq 0$)
\(\Rightarrow a+b=2\sqrt{2}; ab=\frac{\sqrt{3}(\sqrt{3}-1)(\sqrt{3}+1)}{2}=\sqrt{3}\)
Do đó: $A=\frac{2\sqrt{2}-\sqrt[4]{3}}{2\sqrt{2}-2\sqrt[4]{3}}$
Rút gọn rồi tính:
a) \(5\sqrt{\left(-2\right)^4}\) c)\(\sqrt{\sqrt{\left(-5\right)^8}}\)
b)\(-4\sqrt{\left(-3\right)^6}\)
\(5\sqrt{\left(-2\right)^4}=5\sqrt{4^2}=5.4=20\)
\(-4\sqrt{\left(-3\right)^6}=-4\sqrt{27^2}=-4.27=-108\)
\(\sqrt{\sqrt{\left(-5\right)^8}}=\sqrt{\sqrt{\left(5^4\right)^2}}=\sqrt{5^4}=\sqrt{25^2}=25\)
1/ Cho biểu thức \(A=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)
Tính giá trị của A khi x=36
2/ rút gọn biểu thức \(B=\left(\frac{\sqrt{x}}{\sqrt{x}+4}+\frac{4}{\sqrt{x}-4}\right):\frac{x+16}{\sqrt{x}+2}\left(x\ge0,x\ne16\right)\)
3/ Với các biểu thức A và B nói trên, hãy tìm các giá trị của x nguyên để giá trị của biểu thức B(A-1) là số nguyên
GIÚP MÌNH VỚI!!!!!! MAI MÌNH NỘP BÀI RỒI!!!!!!!!!!1
Rút gọn: \(A=\frac{\sqrt{2+\sqrt{4-x^2}}\left(\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right)}{4+\sqrt{4-x^2}}\) với \(-2\le x\le2\)
Giúp mình nhanh với mình sẽ tick cho...B-)
Đặt \(a=\sqrt{2+x};\text{ }b=\sqrt{2-x}\Rightarrow a^2+b^2=4\)
\(A=\frac{\sqrt{2+ab}\left(a^3-b^3\right)}{a^2+b^2+ab}=\frac{\sqrt{2+ab}\left(a-b\right)\left(a^2+b^2+ab\right)}{a^2+b^2+ab}=\left(a-b\right)\sqrt{\frac{a^2+b^2}{2}+ab}\)
\(=\left(a-b\right)\sqrt{\frac{\left(a+b\right)^2}{2}}=\frac{\left(a-b\right)\left(a+b\right)}{\sqrt{2}}\)
\(=\frac{a^2-b^2}{\sqrt{2}}=\frac{\left(2+x\right)-\left(2-x\right)}{\sqrt{2}}=\frac{2x}{\sqrt{2}}=x\sqrt{2}\)
2) Tính: (Giải chi tiết từng bước)
a) \(2\sqrt{125}+\dfrac{3}{2}\sqrt{80}-\sqrt{180}-\dfrac{2}{7}\sqrt{245}\)
b) \(\sqrt{11-4\sqrt{7}}-\sqrt{16+6\sqrt{7}}\)
3) Tìm x, biết:
a) \(\sqrt{\left(x-1\right)^2}=4\)
b) \(\sqrt{36x^2-60x+25}=4\)
Bài 2:
a) \(2\sqrt{125}+\dfrac{3}{2}\sqrt{80}-\sqrt{180}-\dfrac{2}{7}\sqrt{245}\)
\(=2\sqrt{5^2\cdot5}+\dfrac{3}{2}\sqrt{4^2\cdot5}-\sqrt{6^2\cdot5}-\dfrac{2}{7}\sqrt{7^2\cdot5}\)
\(=10\sqrt{5}+\dfrac{3\cdot4}{2}\sqrt{5}-6\sqrt{5}-\dfrac{2\cdot7}{7}\sqrt{5}\)
\(=10\sqrt{5}+6\sqrt{6}-6\sqrt{5}-2\sqrt{5}\)
\(=8\sqrt{5}\)
b) \(\sqrt{11-4\sqrt{7}}-\sqrt{16+6\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}\right)^2-2\cdot2\cdot\sqrt{7}+2^2}-\sqrt{\left(\sqrt{7}\right)^2+2\cdot3\cdot\sqrt{7}+3^2}\)
\(=\sqrt{\left(\sqrt{7}-2\right)^2}-\sqrt{\left(\sqrt{7}+3\right)^2}\)
\(=\sqrt{7}-2-\sqrt{7}-3\)
\(=-5\)
\(2a,\\ 2\sqrt{125}+\dfrac{3}{2}.\sqrt{80}-\sqrt{180}-\dfrac{2}{7}\sqrt{245}\\ =2\sqrt{5^2.5}+\dfrac{3}{2}.\sqrt{4^2.5}-\sqrt{6^2.5}-\dfrac{2}{7}.\sqrt{7^2.5}\\ =2.5.\sqrt{5}+\dfrac{3}{2}.4.\sqrt{5}-6\sqrt{5}-\dfrac{2}{7}.7\sqrt{5}\\ =10\sqrt{5}+6\sqrt{5}-6\sqrt{5}-2\sqrt{5}=8\sqrt{5}\)
3:
a: =>|x-1|=4
=>x-1=4 hoặc x-1=-4
=>x=-3 hoặc x=5
b: =>|6x-5|=4
=>6x-5=4 hoặc 6x-5=-4
=>6x=1 hoặc 6x=9
=>x=1/6 hoặc x=3/2
Rút gọn rồi tính giá trị của biểu thức
\(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}\div\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}vớia=7,25;b=3,25\)
\(\frac{a-b}{\sqrt{a\times\left(a+2\times b\right)+b^2}}\div\sqrt{\frac{\left(a-b\right)^2}{a\times\left(a+b\right)}}vớia>b>0và\frac{a}{b}=\frac{9}{7}\)
\(\frac{x-1}{\sqrt{y}-1}\times\sqrt{\frac{\left(y-2\times\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}vớix=\frac{-1}{2};y=121\); giúp mk vs