Chương I - Căn bậc hai. Căn bậc ba

NT

Rút gọn rồi tính các biểu thức sau:

a)\(A=\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right)\left(\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\) với \(a^2=6-3\sqrt{3};b^2=2+\sqrt{3}\)

b)\(B=\dfrac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4}+x+2}\)với \(x=1+\sqrt{5}\)

AH
26 tháng 6 2021 lúc 11:32

Câu a, bạn coi lại đề xem $a^2=6-3\sqrt{3}$ hay $a=6-3\sqrt{3}$???

 

Bình luận (4)
AH
26 tháng 6 2021 lúc 11:37

b.

\(B=\frac{\sqrt{(x-2)+(x+2)+2\sqrt{(x-2)(x+2)}}}{\sqrt{x^2-4}+x+2}\)

\(=\frac{\sqrt{(\sqrt{x-2}+\sqrt{x+2})^2}}{\sqrt{x^2-4}+x+2}=\frac{\sqrt{x-2}+\sqrt{x+2}}{\sqrt{x^2-4}+x+2}=\frac{\sqrt{x-2}+\sqrt{x+2}}{\sqrt{x+2}(\sqrt{x-2}+\sqrt{x+2})}=\frac{1}{\sqrt{x+2}}\)

\(=\frac{1}{\sqrt{3+\sqrt{5}}}=\frac{\sqrt{2}}{\sqrt{6+2\sqrt{5}}}=\frac{\sqrt{2}}{\sqrt{(\sqrt{5}+1)^2}}=\frac{\sqrt{2}}{\sqrt{5}+1}\)

Bình luận (0)
AH
26 tháng 6 2021 lúc 21:56

Nguyễn Hoàng trung: Chả qua nếu $a=6-3\sqrt{3}; b=2+\sqrt{3}$ thì kết quả sẽ đẹp hơn. Còn như đề thì vẫn rút gọn được.

\(A=\frac{a-\sqrt{ab}+b}{(\sqrt{a}-\sqrt{b})^2}=\frac{a-\sqrt{ab}+b}{a-2\sqrt{ab}+b}\)

\(2a^2=12-6\sqrt{3}=(3-\sqrt{3})^2\Rightarrow a=\frac{3-\sqrt{3}}{\sqrt{2}}\) (do $a\geq 0$)

\(2b^2=4+2\sqrt{3}=(\sqrt{3}+1)^2\Rightarrow b=\frac{\sqrt{3}+1}{\sqrt{2}}\) (do $b\geq 0$)

\(\Rightarrow a+b=2\sqrt{2}; ab=\frac{\sqrt{3}(\sqrt{3}-1)(\sqrt{3}+1)}{2}=\sqrt{3}\)

Do đó: $A=\frac{2\sqrt{2}-\sqrt[4]{3}}{2\sqrt{2}-2\sqrt[4]{3}}$

 

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
AQ
Xem chi tiết
QE
Xem chi tiết
QE
Xem chi tiết
QE
Xem chi tiết
NS
Xem chi tiết
AQ
Xem chi tiết
NP
Xem chi tiết
DH
Xem chi tiết