Những câu hỏi liên quan
MT
Xem chi tiết
NL
14 tháng 9 2021 lúc 18:14

3.

Từ BBT ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)

B đúng

4.

Từ BBT ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(0;1\right)\)

A đúng

1.

B sai (thiếu điều kiện \(f'\left(x\right)=0\) tại hữu hạn điểm)

Bình luận (1)
NL
14 tháng 9 2021 lúc 18:55

Câu 2 đề thiếu yêu cầu

Câu 9:

Từ đồ thị ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;0\right)\) và \(\left(2;+\infty\right)\)

\(\Rightarrow\) A đúng do \(\left(-1;0\right)\subset\left(-\infty;0\right)\)

Bình luận (0)
MT
Xem chi tiết
TT
Xem chi tiết
TL
Xem chi tiết
ND
19 tháng 5 2021 lúc 7:49

1.needn't

2.impressed

3.the

4.send

5.the

6.who

ko biết đúng ko nữa 

Bình luận (0)
HN
19 tháng 5 2021 lúc 8:22

Part 1

1 needn't

2 impressed

3 with

4 send

5 the

6 who

Part 2

1f 2d 3c 4b 5a 6g

Part 3

1 was cooking

2 surfing

3 went

4 was going to visit

5 try

6 widened

7 cultural

8 conveniently

Part 4

1 serious -> seriously

2 well-preserved -> be well-preserved

Part 5

1 my english were good

2 going to the english-

3 area has been spoiled 

4 which I read 

Part 6 

1 without

2 be damaged

3 healthy

4 destruction

Part 7

2F 3F 4F

Bình luận (0)
MT
Xem chi tiết
MT
Xem chi tiết
NL
14 tháng 9 2021 lúc 17:26

Câu 5:

Nhìn BBT trên \(\left(0;+\infty\right)\) ta thấy trên \(\left(0;1\right)\) đồ thị là đường đi xuống (nghịch biến) nên hàm đồng biến trên toàn miền \(\left(0;+\infty\right)\) là sai

Câu 6:

Từ BBT ta thấy hàm nghịch biến trên các khoảng xác định

\(\Rightarrow\) Loại 2 phương án A và B (ở 2 phương án này hàm đồng biến do y' lần lượt là \(\dfrac{3}{\left(x-2\right)^2}>0\)  và \(\dfrac{15}{\left(x+8\right)^2}>0\))

Còn lại 2 phương án C và D, nhìn BBT ta thấy  \(y=2\)  là tiệm cận ngang (giá trị của y tại x vô cực)

\(\lim\limits_{x\rightarrow\infty}\dfrac{2x+1}{x-2}=2\) (đúng) nên chọn C

7.

Từ BBT ta thấy đây là BBT của hàm bậc 3 \(\Rightarrow\) loại B và D

Từ BBT, y'=0 có 2 nghiệm \(x=0,x=2\)

Ở đáp án A, \(y'=x^2+2x=0\Rightarrow x=0;x=-2\) (ktm)

Nên C đúng (\(y'=x^2-2x=0\Rightarrow x=0;2\))

11.

Nhìn đồ thị, ta thấy trên \(\left(-1;0\right)\) đồ thị chỉ có hướng đi lên \(\Rightarrow\) đồng biến trên (-1;0) nên C đúng

(A sai vì trên (-3;0) đồ thị có khoảng đi lên (đồng biến) ở (-1;0)

B sai vì trên (0;2) đồ thị đi xuống => nghịch biến chứ ko phải đồng biến

D sai vì trên (2;3) đồ thị đi lên (đồng biến)

Bình luận (0)
NL
14 tháng 9 2021 lúc 16:38

5C, 6C, 7C, 11C

Cả 4 câu đều C luôn, kì quái thật

Bình luận (1)
MT
Xem chi tiết
MT
16 tháng 9 2021 lúc 16:55

cái hồi nãy thiếu câu hỏi em bổ sung ở dưới này ạ 

em cảm ơn mnundefined

Bình luận (1)
NL
17 tháng 9 2021 lúc 16:44

5.

TXĐ: \(D=\left(-\infty;-1\right)\cup\left(-1;+\infty\right)\)

\(y'=\dfrac{2}{\left(x+1\right)^2}>0\) ; \(\forall x\in D\) 

\(\Rightarrow\) Hàm đồng biến trên mỗi khoảng xác định

Hay hàm đồng biến trên \(\left(-\infty;-1\right)\) và \(\left(-1;+\infty\right)\)

6.

\(y=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\)

Dấu của y' trên trục số:

undefined

Từ đó ta thấy:

Hàm đồng biến trên các khoảng \(\left(-1;0\right)\) và \(\left(1;+\infty\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)

Bình luận (0)
NL
17 tháng 9 2021 lúc 16:47

Tìm cực trị

a.

\(f'\left(x\right)=3x^2-3=0\Rightarrow x=\pm1\)

\(f''\left(x\right)=6x\)

\(f''\left(-1\right)=-6< 0\)

\(f''\left(1\right)=6>0\)

\(\Rightarrow x=-1\) là điểm cực đại và \(x=1\) là điểm cực tiểu

b.

\(f'\left(x\right)=-4x^3+4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\)

\(f''\left(x\right)=-12x^2+4\)

\(f''\left(0\right)=4>0\) ; \(f''\left(-1\right)=-8< 0\) ; \(f''\left(1\right)=-8< 0\)

\(\Rightarrow x=0\) là điểm cực tiểu và \(x=\pm1\) là 2 điểm cực đại

c.

\(f'\left(x\right)=\dfrac{3}{\left(x-1\right)^2}\ne0\) với mọi x thuộc miền xác định

Hàm không có cực trị

Bình luận (0)
NN
Xem chi tiết
QT
Xem chi tiết
NL
2 tháng 5 2021 lúc 17:12

Lấy \(2.\left(2\right)-\left(1\right)\) ta được:

\(2b+4a+6-\left(a-1-2b\right)=0\)

\(\Leftrightarrow4b+3a+7=0\Rightarrow b=\dfrac{-3a-7}{4}\)

Thế vào (2):

\(\sqrt{a^2+\left(\dfrac{-3a-7}{4}\right)^2}=\dfrac{-3a-7}{4}+2a+3\)

\(\Leftrightarrow\sqrt{25a^2+42a+49}=5a+5\) (\(a\ge-1\))

\(\Leftrightarrow25a^2+42a+49=25a^2+50a+25\)

\(\Rightarrow a=...\Rightarrow b=...\)

Bình luận (0)